欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

HDU - 1016 Prime Ring Problem

程序员文章站 2022-05-21 08:44:30
...

Prime Ring Problem

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 70236 Accepted Submission(s): 30023

Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, …, n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.

Input
n (0 < n < 20).

Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.

Sample Input
6
8

Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4

Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2

链接:http://acm.hdu.edu.cn/showproblem.php?pid=1016

简述:给出一个由n个数(1~n)组成的环,相邻两个数之和是素数,按顺序输出。

分析:将环化为数组,第0个数是1,后面每一个数与前一个数之和是素数且最后一个数与1之和为素数。写一个bool类型函数判断素数,dfs函数进行深搜。。。

说明:

AC代码如下:

#include <iostream>
#include <cstring>
using namespace std;
int n, t=1;
int a[20], vis[20] = {0};
bool sushu(int a)
{
	int i;
	if (a == 1) return false;
	if (a == 2) return true;
	for (i = 2; i*i <= a; i++)
	{
		if (a%i == 0) return false;
	}
	return true;
}
void dfs(int b)
{
	int i;
	if (b == n && sushu(a[n-1] + 1)) //递归边界
	{
		cout << a[0];
		for (i = 1; i < n; i++)
		{
			cout << " " << a[i];
		}
		cout << endl;
	}
	else
	{
		for (i = 2; i <= n; i++)
		{
			if (sushu(a[b - 1] + i) && vis[i] != 1) //没有被搜过,且与前一位之和是素数(前一位已经确定好了)
			{
				a[b] = i; //储存
				vis[i] = 1; //标记被搜过
				dfs(b + 1); //搜下一位,此处有无限次循环
				vis[i] = 0;
			}
		}
	}
}
int main()
{
	a[0] = 1; //第0个位置永远是1
	while (cin >> n)
	{
		memset(vis, 0, sizeof(vis)); //将数组清零
		cout << "Case " << t++ << ":" << endl;
		dfs(1);
		cout << endl;
	}
}