Python有哪些黑魔法?
程序员文章站
2022-05-12 15:08:27
...
回复内容:
ctypes ,当年有个人靠这个省了好几个月的加班------------------------劳动节补充-----------------------------
回答 @于酥酥
1. ipython + ctypes: 调试/测试Linux API的交互式运行环境
ipython是最好的REPL!(我喜欢Python,至少有30%的好感来自ipython)
REPL的好处不言自明,在开发和调试时能大大的提高效率。尤其是需要对API进行快速验证时。
我最早是用gdb来做一些REPL的事情,但毕竟操作复杂,交互式功能有限。而用ctypes,就爽快多了,ctypes可以直接人so中提取出函数,在Python层面稍加包装,就能直接使用,不用编译/连接,保持运行状态,结果出来直接用Python分析……简直是画面太美
真实场景:
我们的运营环境有数十万host,host上去除了编译环境,某一天,我们对某个系统调用的返回产生怀疑。于是,按照通常的作法,在开发机上写一个示例程序,编译,拷贝到运营机,运行,反复执行这一个过程。
那么有了ctypes,直接在python/ipython的REPL里调试就好了。还不容易留下可疑的可执行程序。
2. ctypes作为胶水
ctypes增强了python作为胶水语言的能力,从进程调用/统一协议级别的脱水直接深入到二进制级别的脱水。这样看来,C++对C的兼容就显得没那么重要了
真实场景:
某个执行框架,插件以so的形式提供,so提供固定的函数入口。重构时打算去除语言耦合,改用进程调用的方式调用插件(类似于cgi server,这样可以减少对插件编写的限制,插件本身也更容易测试,防止so崩溃造成框架整体崩溃)。但是很多插件的作者已离职,于是只需要框架额外增加从so里调用函数出来即可,做到平滑升级。
3. ctypes与系统编程
ctypes作为一种轻量并且内置的c语言“代理”,使得python极大地增强了系统编程的能力。
从此,系统编程的代码也可以变得更加优雅。
真实场景:
sdn/vpc方案需要对内核协议栈做较多的调整,从管理的层面上,网络配置由*控制并下发。因此,host上存在一个daemon,一方面要接受zookeeper的配置变更通知,另一方面要把配置解析后通过netlink与内核通信。
这个daemon大概几乎没有人会用python去做。但是我看到iotop里用到ctypes对netlink接口的封装,惊为天人,并且python更加适合对配置解析与处理。我斗胆用python实现了这个daemon,调试起来如丝般顺滑,然后就减少了好几个月的加班。
回答我成电师兄 @韦易笑 大神
没有有生产环境用过cffi,以前在自己电脑上简单用过,感觉不如ctypes简单粗暴。当然我没去用的主要原因还是不想在部署的时候附带太多东西。 在Quora上看到的, 不算黑科技吧, 但感觉挺有意思的. turtle是内置库
======================================================================
补充一个最近才看到的:
要对字典里面的键嵌套赋值, 对键不存在时候的解决方案:
import collections
tree = lambda: collections.defaultdict(tree)
some_dict = tree()
some_dict["colors"]["favourite"] = "yellow"
使用contextmanager来限制一个block的执行超时:with timeout(seconds=10):
balabala()
pandas..
__slots__ 当年有个网站靠这个省了几个GB的内存。
可以看看这个,其实也不算黑魔法。difflib,它是个official的module哦,用来比较串的相似度。
(difflib)[difflib – Compare sequences],
另外常用的functools和collections也都是Python吸引人的地方。
很多第三方的库窃以为不能算了。
另外doctest在进行单元测试的时候也是棒呆
25.2. doctest 说到python黑魔法,必然要提到python的第三方协程库gevent的底层实现——greenlet。
greenlet直接在内存层面,通过保存和替换Python进程的运行栈来实现不同协程的切换。
这个切换对于python解释器是透明的,如果python解释器对环境有感知的话,则每当协程切换的时候,它的感觉可能类似一个人前一秒还在在路上走路,下一秒突然自己又出现在了地铁上。
对于普通python用户而言,直接操作python的运行时栈,这就是在刀尖上跳舞有木有,这要求对内存的操作100%精确,任何错误都可能导致python进程崩溃!
那作者又是如何又是如何来保证正确性呢?除了要熟悉python、操作系统、编译器等等的底层机制,明确设计方案,还需要对不同的系统以及硬件环境做对应的适配工作。我们在使用python的时候,在不同的系统或者硬件下感觉都一样,那是因为python本身为我们屏蔽了底层细节,在做这种python底层hack的事情的时候,显然就没那么轻松了。
举个例子,由于CPU有很多种,例如i386、x86_64、arm等等,每种CPU的设计不尽相同,于是作者为每种CPU写了对应的汇编操作指令来完成栈的保存和替换,这些操作都是与操作系统和硬件高度绑定的。
虽然greenlet的实现这么bt,但就是有人做到了,加上gevent的封装,用起来比python自带协程好用太多。
我想任何对python比较熟悉的童鞋,在初次接触gevent的时候,都会好奇它是如何做到的,在进一步了解其底层greenlet实现机理之后,无不惊叹其鬼斧神工。
这种事情就是那种,别人不说,你可能永远不会想到的事情。 pip一下啥都有呀,比如微信接口 itchat
pip install itchat
- Flask 中的插件是怎么做的? 为何能用
from flask.ext.sqlalchemy import SQLAlchemy
声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn核实处理。
相关文章
相关视频
专题推荐
-
独孤九贱-php全栈开发教程
全栈 170W+
主讲:Peter-Zhu 轻松幽默、简短易学,非常适合PHP学习入门
-
玉女心经-web前端开发教程
入门 80W+
主讲:灭绝师太 由浅入深、明快简洁,非常适合前端学习入门
-
天龙八部-实战开发教程
实战 120W+
主讲:西门大官人 思路清晰、严谨规范,适合有一定web编程基础学习
上一篇: 后台管理系统,前端用什么框架开发比较好?
下一篇: 该怎样迅速确定php多维数组的深度?
网友评论
文明上网理性发言,请遵守 新闻评论服务协议
我要评论