梯度下降
程序员文章站
2021-12-08 11:03:02
梯度下降算法(gradient desent)以直线模型y=x*w为例数据集如下:xy122436cost(w)=(1N)∑n=1N(y^−y)2cost(w) = \left(\frac{1}{N}\right)\sum_{n=1}^N(\hat y-y)^2cost(w)=(N1)∑n=1N(y^−y)2梯度的方向一定是函数值上升的方向,最小值是0梯度下降公式:w=w−α∂cost∂ww = w - α\frac{\partial cost}{...
梯度下降算法(gradient desent)
以直线模型y=x*w为例
数据集如下:
x | y |
---|---|
1 | 2 |
2 | 4 |
3 | 6 |
梯度的方向一定是函数值上升的方向,最小值是0
梯度下降公式:(α为学习率)
=
=
python代码:
x_data = [1.0,2.0,3.0]
y_data = [2.0,4.0,6.0]
w = 1.0
def forward(x):
return x*w
def cost(xs,ys):
cost = 0
for x,y in zip(xs,ys):
y_pred = forward(x)
cost +=(y_pred-y) ** 2
return cost/len(xs)
def gradient(xs,ys):
grad = 0
for x,y in zip(xs,ys):
grad+=2*x*(x*w-y)
return grad/len(xs)
print('Predict (before training)',4,forward(4))
for epoch in range(100):
cost_val = cost(x_data,y_data)
grad_val = gradient(x_data,y_data)
w-=0.01*grad_val
print('Epoch:',epoch,'w=',w,'loss=',cost_val)
print('Predict (after training)',4,forward(4))
若曲线波动比较大,可以用指数加权均值平滑
随机梯度下降(Stochastic gradient descent)
梯度下降公式:
=
注意这里是对每一个样本求梯度,而梯度下降是对全部样本求梯度,这里就有一个很明显的问题,对于梯度下降在计算f(x)的梯度和计算f(x+1)的梯度是可以并行计算的,然而在随机梯度下降中显然是不行的,因为其计算每一个样本的梯度然后更新w,这个w又用于f(x+1)的计算,所以从时间复杂度上来看随机梯度下降差,但是性能上随机梯度下降好一些。
本文地址:https://blog.csdn.net/luoshiyong123/article/details/107283498
下一篇: 字节跳动战投部已解散