欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

POJ 2018 Best Cow Fences(二分答案)

程序员文章站 2022-05-08 17:57:39
...

POJ 2018 Best Cow Fences(二分答案)

Best Cow Fences
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 12144 Accepted: 3958
Description

Farmer John's farm consists of a long row of N (1 <= N <= >100,000)fields. Each field contains a certain number of cows, >1 <= ncows <= 2000.

FJ wants to build a fence around a contiguous group of these >fields in order to maximize the average number of cows per >field within that block. The block must contain at least F (1 ><= F <= N) fields, where F given as input.

Calculate the fence placement that maximizes the average, >given the constraint.
Input

  • Line 1: Two space-separated integers, N and F.
  • Lines 2..N+1: Each line contains a single integer, the >number of cows in a field. Line 2 gives the number of cows in >field 1,line 3 gives the number in field 2, and so on.
    Output
  • Line 1: A single integer that is 1000 times the maximal >average.Do not perform rounding, just print the integer that >is 1000*ncows/nfields.
    Sample Input

10 6
6
4
2
10
3
8
5
9
4
1
Sample Output

6500


题意: N, F。n个数,求一个长度大于F的序列,平均数最大。输出平均数乘1000


思路: 二分答案,对于【L,R】区间中的mid,求是否有一个长度大于F的序列平均数大于mid.来缩小区间

把序列减去mid,问题就变成了是否存在一个长度大于F的序列,最大字段和大于零。没有长度限制,最大子段和的DP问题。有了长度限制可以转化为前缀和sum[r] - sum[l - 1] ,我们用前缀和维护一个长度大于F的序列,维护一下前缀和的最小值。

    double ans = -1e9;
    double min_val = 1e9;
    for(int i = L; i <= N; i++ ) {
        min_val = min(min_val, sum[i - L]);
        ans = max(ans, sum[i] - min_val);
    }
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;
const int MAXN = 1e5 + 7;
const double EPS = 1e-5;


int N, L;

double a[MAXN], b[MAXN], sum[MAXN];

int main()
{
    while(~scanf("%d %d", &N, &L)) {
        for(int i = 1; i <= N;i ++ ) {
            scanf("%lf", &a[i]);
        }
        double l = -1e8, r = 1e8;
        while(l + EPS < r) {
            double mid = (l + r) / 2.0;
            for(int i = 1; i <= N; i++ ) {
                b[i] = a[i] - mid;
            }
            for(int i = 1; i <= N; i++ ) {
                sum[i] = (sum[i - 1] + b[i]);
            }
            double ans = -1e9;
            double min_val = 1e9;
            for(int i = L; i <= N; i++ ) {
                min_val = min(min_val, sum[i - L]);
                ans = max(ans, sum[i] - min_val);
            }
            if(ans >= 0) {
                l = mid;
            } else {
                r = mid;
            }
        }
        printf("%d\n", int(r * 1000));
    }
    return 0;
}