欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

7月5号第二次直播学习笔记

程序员文章站 2022-05-07 13:49:55
一:alex更浓的鸡汤 alex为我们分享了他自己的职业发展历程,为我们点出一些职场上的重要关注点,很是收益,尤其是那一句‘你为什么不受到关注’印象深刻,最后alex指出思维的升级和改变给自己的重要意义,深受启发,感谢! 二:Selenium基础知识点的学习 Selenium是一个第三方模块,可以完 ......

一:alex更浓的鸡汤

  alex为我们分享了他自己的职业发展历程,为我们点出一些职场上的重要关注点,很是收益,尤其是那一句‘你为什么不受到关注’印象深刻,最后alex指出思维的升级和改变给自己的重要意义,深受启发,感谢!

二:Selenium基础知识点的学习

  Selenium是一个第三方模块,可以完全模拟用户在浏览器上操作(在浏览器上点点点)。

  1,安装

    - pip install selenium

  2,优缺点

    -无需查看和确定请求头请求体等数据细节,直接模拟人点击浏览器的行为

    -但效率不高

  3,依赖驱动:

       Firefox
        https://github.com/mozilla/geckodriver/releases
      Chrome
        http://chromedriver.storage.googleapis.com/index.html

  4,与selenium相关的基本操作

from selenium import webdriver

# 配置驱动
#驱动一定要自己下载并放在一个目录,否则会出错
option = webdriver.ChromeOptions() driver = webdriver.Chrome('/Users/wupeiqi/drivers/chromedriver', chrome_options=option) # 1. 控制浏览器打开指定页面 driver.get("https://dig.chouti.com/all/hot/recent/1") # 2. 找到登录按钮 btn_login = driver.find_element_by_xpath('//*[@id="login-link-a"]') # 3. 点击按钮 btn_login.click() # 4. 找到手机标签 input_user = driver.find_element_by_xpath('//*[@id="mobile"]') # 5. 找到密码标签 input_pwd = driver.find_element_by_xpath('//*[@id="mbpwd"]') # 6. 输入用户名 input_user.send_keys('13121758648') # 7. 输入密码 input_pwd.send_keys('woshiniba') # 8. 点击登录按钮 input_submit = driver.find_element_by_xpath( '//*[@id="footer-band"]/div[5]/div/div/div[1]/div[2]/div[4]/div[2]/div/span[1]') input_submit.click() print(driver.get_cookies()) # # 9. 点击跳转 # news = driver.find_element_by_xpath('//*[@id="newsContent20646261"]/div[1]/a[1]') # # news.click() # driver.execute_script("arguments[0].click();", news) # 10.管理浏览器 # driver.close()

三:破解路飞官网滑动验证码

  peiqi老师为我们带来的精彩的讲解,从__main__的主函数调用开始,先讲了图片的截取和距离的测算,接下来分析了怎么模拟人类行为的滑动过程,通过速度和加速度的空值实现,而且会故意制造匹配之后的小幅振动行为,最后点击确定就可以破解该验证码,重点是像素的选择和速度的调节,感谢!

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
import os
import shutil
from PIL import Image
import time


def get_snap(driver):
    driver.save_screenshot('full_snap.png')
    page_snap_obj = Image.open('full_snap.png')

    return page_snap_obj


def get_image(driver):
    img = driver.find_element_by_class_name('geetest_canvas_img')
    time.sleep(2)
    location = img.location
    size = img.size

    left = location['x']
    top = location['y']
    right = left + size['width']
    bottom = top + size['height']

    page_snap_obj = get_snap(driver)

    image_obj = page_snap_obj.crop((left * 2, top * 2, right * 2, bottom * 2))
    # image_obj.show()
    with open('code.png', 'wb') as f:
        image_obj.save(f, format='png')
    return image_obj


def get_distance(image1, image2):
    # start = 0
    # threhold = 70
    # for i in range(start, image1.size[0]):
    #     for j in range(0, image1.size[1]):
    #         rgb1 = image1.load()[i, j]
    #         rgb2 = image2.load()[i, j]
    #         res1 = abs(rgb1[0] - rgb2[0])
    #         res2 = abs(rgb1[1] - rgb2[1])
    #         res3 = abs(rgb1[2] - rgb2[2])
    #         # print(res1,res2,res3)
    #         if not (res1 < threhold and res2 < threhold and res3 < threhold):
    #             print(111111, i, j)
    #             return i - 13
    # print(2222, i, j)
    # return i - 13
    start = 0
    threhold = 70
    v = []
    for i in range(start, image1.size[0]):
        for j in range(0, image1.size[1]):
            rgb1 = image1.load()[i, j]
            rgb2 = image2.load()[i, j]
            res1 = abs(rgb1[0] - rgb2[0])
            res2 = abs(rgb1[1] - rgb2[1])
            res3 = abs(rgb1[2] - rgb2[2])

            if not (res1 < threhold and res2 < threhold and res3 < threhold):
                print(i)
                if i not in v:
                    v.append(i)

    stop = 0
    for i in range(0, len(v)):
        val = i + v[0]
        if v[i] != val:
            stop = v[i]
            break

    width = stop - v[0]
    print(stop, v[0], width)
    return width


def get_tracks(distance):
    import random
    exceed_distance = random.randint(0, 5)
    distance += exceed_distance  # 先滑过一点,最后再反着滑动回来
    v = 0
    t = 0.2
    forward_tracks = []

    current = 0
    mid = distance * 3 / 5
    while current < distance:
        if current < mid:
            a = random.randint(1, 3)
        else:
            a = random.randint(1, 3)
            a = -a
        s = v * t + 0.5 * a * (t ** 2)
        v = v + a * t
        current += s
        forward_tracks.append(round(s))

    # 反着滑动到准确位置
    v = 0
    t = 0.2
    back_tracks = []

    current = 0
    mid = distance * 4 / 5
    while abs(current) < exceed_distance:
        if current < mid:
            a = random.randint(1, 3)
        else:
            a = random.randint(-3, -5)
            a = -a
        s = -v * t - 0.5 * a * (t ** 2)
        v = v + a * t
        current += s
        back_tracks.append(round(s))
    return {'forward_tracks': forward_tracks, 'back_tracks': list(reversed(back_tracks))}


def crack(driver):  # 破解滑动认证
    # 1、点击按钮,得到没有缺口的图片
    button = driver.find_element_by_xpath('//*[@id="embed-captcha"]/div/div[2]/div[1]/div[3]')
    button.click()

    # 2、获取没有缺口的图片
    image1 = get_image(driver)

    # 3、点击滑动按钮,得到有缺口的图片
    button = driver.find_element_by_class_name('geetest_slider_button')
    button.click()

    # 4、获取有缺口的图片
    image2 = get_image(driver)

    # 5、对比两种图片的像素点,找出位移
    distance = get_distance(image1, image2)
    print(distance)
    #
    # 6、模拟人的行为习惯,根据总位移得到行为轨迹
    tracks = get_tracks(int(distance / 2))

    # 7、按照行动轨迹先正向滑动,后反滑动
    button = driver.find_element_by_class_name('geetest_slider_button')
    ActionChains(driver).click_and_hold(button).perform()

    # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
    for track in tracks['forward_tracks']:
        ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()

    # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
    time.sleep(0.5)
    for back_track in tracks['back_tracks']:
        ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()
    #
    # # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
    ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
    ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()

    # # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
    time.sleep(0.5)
    ActionChains(driver).release().perform()


def login_luffy(username, password):
    driver = webdriver.Chrome('/Users/wupeiqi/drivers/chromedriver')
    driver.set_window_size(960, 800)
    try:
        # 1、输入账号密码回车
        driver.implicitly_wait(3)
        driver.get('https://www.luffycity.com/login')

        input_username = driver.find_element_by_xpath('//*[@id="router-view"]/div/div/div[2]/div[2]/input[1]')
        input_pwd = driver.find_element_by_xpath('//*[@id="router-view"]/div/div/div[2]/div[2]/input[2]')

        input_username.send_keys(username)
        input_pwd.send_keys(password)

        # 2、破解滑动认证
        crack(driver)

        time.sleep(10)  # 睡时间长一点,确定登录成功
    finally:
        pass
        # driver.close()


if __name__ == '__main__':
    login_luffy(username='wupeiqi', password='123123123')

 

  四:总结

    通过selenium模拟人类单机浏览器的行为,破解滑动验证码,让我有get到了爬虫的一个本领,首先需要掌握selenium点击行为的一般模式,最后可以好好的参考peiqi老师的代码,作为模板用到以后的工作中,很有帮助,谢谢!下一步想再学学其他验证码的破解方式,多多益善!