欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

JavaScript算法模式——动态规划和贪心算法

程序员文章站 2022-05-03 13:40:51
动态规划 动态规划(Dynamic Programming,DP)是一种将复杂问题分解成更小的子问题来解决的优化算法。下面有一些用动态规划来解决实际问题的算法: 最少硬币找零 给定一组硬币的面额,以及要找零的钱数,计算出符合找零钱数的最少硬币数量。例如,美国硬币面额有1、5、10、25这四种面额,如 ......

动态规划

  动态规划(dynamic programming,dp)是一种将复杂问题分解成更小的子问题来解决的优化算法。下面有一些用动态规划来解决实际问题的算法:

最少硬币找零

  给定一组硬币的面额,以及要找零的钱数,计算出符合找零钱数的最少硬币数量。例如,美国硬币面额有1、5、10、25这四种面额,如果要找36美分的零钱,则得出的最少硬币数应该是1个25美分、1个10美分和1个10美分共三个硬币。这个算法要解决的就是诸如此类的问题。我们来看看如何用动态规划的方式来解决。

  对于每一种面额,我们都分别计算所需要的硬币数量。具体算法如下:

  1. 如果全部用1美分的硬币,一共需要36个硬币
  2. 如果用5美分的硬币,则需要7个5美分的硬币 + 1个1美分的硬币 = 8个硬币
  3. 如果用10美分的硬币,则需要3个10美分的硬币 + 1个5美分的硬币 + 1个1美分的硬币 = 5个硬币
  4. 如果用25美分的硬币,则需要1个25美分的硬币 + 1个10美分的硬币 + 1个1美分的硬币 = 3个硬币

  对应的示意图如下:

JavaScript算法模式——动态规划和贪心算法

  方案4的硬币总数最少,因此为最优方案。

  具体的代码实现如下:

function mincoinchange(coins, amount) {
    let result = null;
    if (!amount) return result;

    const makechange = (index, value, min) => {
        let coin = coins[index];
        let newamount = math.floor(value / coin);
        if (newamount) min[coin] = newamount;
        if (value % coin !== 0) {
            makechange(--index, value - coin * newamount, min);
        }
    };

    const arr = [];
    for (let i = 0; i < coins.length; i++) {
        const cache = {};
        makechange(i, amount, cache);
        arr.push(cache);
    }

    console.log(arr);
    let newmin = 0;
    arr.foreach(item => {
        let min = 0;
        for (let v in item) min += item[v];
        if (!newmin || min < newmin) {
            newmin = min;
            result = item;
        }
    });
    return result;
}

  函数mincoinchange()接收一组硬币的面额,以及要找零的钱数。我们将上面例子中的值传入:

const result = mincoinchange2([1, 5, 10, 25], 36);
console.log(result);

  得到如下结果:

[
  { '1': 36 },
  { '1': 1, '5': 7 },
  { '1': 1, '5': 1, '10': 3 },
  { '1': 1, '10': 1, '25': 1 }
]
{ '1': 1, '10': 1, '25': 1 }

  上面的数组是我们在代码中打印出来的arr的值,用来展示四种不同面额的硬币作为找零硬币时,实际所需要的硬币种类和数量。最终,我们会计算arr数组中硬币总数最少的那个方案,作为mincoinchange()函数的输出。

  当然在实际应用中,我们可以把硬币抽象成任何你需要的数字,这个算法能给出你满足结果的最小组合。

背包问题

  背包问题是一个组合优化问题,它被描述为:给定一个具有固定容量的背包capacity,以及一组具有价值(value)和重量(weight)的物品,找出一个最优方案,使得装入背包的物品的总重量不超过capacity,且总价值最大。

  假设我们有以下物品,且背包的总容量为5:

物品# 重量 价值
1 2 3
2 3 4
3 4 5

  我们用矩阵来解决这个问题。首先,我们把物品和背包的容量组成如下矩阵:

物品(i)/重量(w) 0 1 2 3 4 5
0 0 0 0 0 0 0
1 (w=2, v=3) 0 0

a: 3+[0][2-2]=3+0

b: [0][2]=0

max(3+0,0)=3

a: 3+[0][3-2]=3+0

b: [0][3]=0

max(3+0,0)=3

a: 3+[0][4-3]=3+0

b: [0][4]=0

max(3+0,0)=3

a: 3+[0][5-3]=3+0

b: [0][5]=0

max(3+0,0)=3

2 (w=3, v=4) 0 0 3

a: 4+[1][3-3]=4+0

b: [1][3]=3

max(4+0,3)=4

a: 4+[1][4-3]=4+0

b: [1][4]=3

max(4+0,3)=4

a: 4+[1][5-3]=4+3

b: [1][5]=3

max(4+3,3)=7

3 (w=4, v=5) 0 0 3 4

a: 5+[2][4-4]=5+0

b: [2][4]=4

max(5+0,4)=5

a: 5+[2][5-4]=5+0

b: [2][5]=7

max(5+0,7)=7

  为了便于理解,我们将矩阵ks的第一列和第一行忽略(因为它们表示的是容量0和第0个物品)。然后,按照要求往矩阵的格子里填数。如果当前的格子能放下对应的物品,存在以下两种情况:

  • a - 放入当前物品,然后剩余的重量再放入前一个物品
  • b - 不放入当前物品,放入前一个物品

  在上面的表格中,

  1. 当背包的重量为1时,没有物品能放入,所以都是0,这个很好理解。
  2. 当背包的重量为2时,物品1可以放入,那么存在两种情况:放入物品1(价值为3),剩余的重量(背包的重量2减去物品1的重量2,结果为0)再放入前一个物品;不放入物品1,放入前一个物品[0][2],价值为0。所以最大价值就是max(3, 0)=3。
  3. ......
  4. 当背包的重量为5时,放入物品2,两种情况:放入物品2(价值为4),剩余的重量(背包的重量5减去物品2的重量3,结果为2)再放入前一个物品,是[1][2],对应的价值是3;不放入物品2,,放入前一个物品[1][5],价值为3。所以最大价值就是max(4+3, 3)=7。
  5. ......

  如果当前物品不能放入背包,则忽略它,用前一个值代替。我们可以按照上面描述的过程把剩余的格子都填满,这样表格中最后一个单元格里的值就是最优方案。

  下面是具体的实现代码:

function knapsack(capacity, weights, values, n) {
    const ks = [];

    // 将ks初始化为一个空的矩阵
    for (let i = 0; i <= n; i++) {
        ks[i] = [];
    }

    for (let i = 0; i <= n; i++) {
        for (let w = 0; w <= capacity; w++) {
            // 忽略矩阵的第1列和第1行
            if (i === 0 || w === 0) {
                ks[i][w] = 0;
            }
            else if (weights[i - 1] <= w) {
                const a = values[i - 1] + ks[i - 1][w - weights[i - 1]];
                const b = ks[i - 1][w];
                ks[i][w] = math.max(a, b);
            }
            else {
                ks[i][w] = ks[i - 1][w];
            }
        }
    }

    console.log(ks);
}

  对于const a,其价值分为两部分,第一部分就是它自己的价值(values[i - 1]),第二部分是用背包剩余的重量(w - weights[i - 1])装进前一个物品(ks[i - 1])。对于const b,就是找前一个能放入这个重量的物品(ks[i - 1][w])。然后取这两种情况下的最大值。

  测试一下knapsack()函数,

const capacity = 5;
const weights = [2, 3, 4];
const values = [3, 4, 5];
knapsack(capacity, weights, values, weights.length);

  下面是矩阵ks的输出结果:

[
  [ 0, 0, 0, 0, 0, 0 ],
  [ 0, 0, 3, 3, 3, 3 ],
  [ 0, 0, 3, 4, 4, 7 ],
  [ 0, 0, 3, 4, 5, 7 ]
]

 最长公共子序列(lcs)

  找出两个字符串序列的最长子序列的长度。所谓最长子序列,是指两个字符串序列中以相同顺序出现,但不要求连续的字符串序列。例如下面两个字符串:

  字符串1:acbaed

  字符串2:abcadf

  则lcs为acad。

  和背包问题的思路类似,我们用下面的表格来描述整个过程:

    a b c a d f
  0 0 0 0 0 0 0
a 0 1 1 1 1 1 1
c 0 1 1 2 2 2 2
b 0 1 2 2 2 2 2
a 0 1 2 2 3 3 3
e 0 1 2 2 3 3 3
d 0 1 2 2 3 4 4

  矩阵的第一行和第一列都被设置为0,剩余的部分,遵循下面两种情况:

  • 如果wordx[i - 1]和wordy[j - 1]相等,则矩阵对应的单元格的值为单元格[i - 1][j - 1]的值加1。
  • 如果wordx[i - 1]和wordy[j - 1]不相等,则找出单元格[i - 1][j]和单元格[i][j - 1]之间的最大值。

  下面是具体的实现代码:

function lcs(wordx, wordy) {
    const m = wordx.length;
    const n = wordy.length;
    const l = [];
    for (let i = 0; i <= m; i++) {
        l[i] = [];
        for (let j = 0; j <= n; j++) {
            l[i][j] = 0;
        }
    }
    for (let i = 0; i <= m; i++) {
        for (let j = 0; j <= n; j++) {
            if (i === 0 || j === 0) {
                l[i][j] = 0;
            } else if (wordx[i - 1] === wordy[j - 1]) {
                l[i][j] = l[i - 1][j - 1] + 1;
            } else {
                const a = l[i - 1][j];
                const b = l[i][j - 1];
                l[i][j] = math.max(a, b);
            }
        }
    }
    console.log(l);
    console.log(l[m][n]);
}

  我们将矩阵打印出来,结果如下:

const wordx = ['a', 'c', 'b', 'a', 'e', 'd'];
const wordy = ['a', 'b', 'c', 'a', 'd', 'f'];
lcs(wordx, wordy);
[
  [ 0, 0, 0, 0, 0, 0, 0 ],
  [ 0, 1, 1, 1, 1, 1, 1 ],
  [ 0, 1, 1, 2, 2, 2, 2 ],
  [ 0, 1, 2, 2, 2, 2, 2 ],
  [ 0, 1, 2, 2, 3, 3, 3 ],
  [ 0, 1, 2, 2, 3, 3, 3 ],
  [ 0, 1, 2, 2, 3, 4, 4 ]
]
4

   矩阵中最后一个单元格的值为lcs的长度。那如何计算出lcs的具体内容呢?我们可以设计一个相同的solution矩阵,用来做标记,如果wordx[i - 1]和wordy[j - 1]相等,则将solution矩阵中对应的值设置为'diagonal',即上面表格中背景为灰色的单元格。否则,根据[i][j]和[i - 1][j]是否相等标记为'top'或'left'。然后通过printsolution()方法来找出lcs的内容。修改之后的代码如下:

function printsolution(solution, wordx, m, n) {
    let a = m;
    let b = n;
    let x = solution[a][b];
    let answer = '';
    while (x !== '0') {
        if (solution[a][b] === 'diagonal') {
            answer = wordx[a - 1] + answer;
            a--;
            b--;
        } else if (solution[a][b] === 'left') {
            b--;
        } else if (solution[a][b] === 'top') {
            a--;
        }
        x = solution[a][b];
    }
    return answer;
}

function lcs(wordx, wordy) {
    const m = wordx.length;
    const n = wordy.length;
    const l = [];
    const solution = [];
    for (let i = 0; i <= m; i++) {
        l[i] = [];
        solution[i] = [];
        for (let j = 0; j <= n; j++) {
            l[i][j] = 0;
            solution[i][j] = '0';
        }
    }
    for (let i = 0; i <= m; i++) {
        for (let j = 0; j <= n; j++) {
            if (i === 0 || j === 0) {
                l[i][j] = 0;
            } else if (wordx[i - 1] === wordy[j - 1]) {
                l[i][j] = l[i - 1][j - 1] + 1;
                solution[i][j] = 'diagonal';
            } else {
                const a = l[i - 1][j];
                const b = l[i][j - 1];
                l[i][j] = math.max(a, b);
                solution[i][j] = l[i][j] === l[i - 1][j] ? 'top' : 'left';
            }
        }
    }

    return printsolution(solution, wordx, m, n);
}

  测试结果:

const wordx = ['a', 'c', 'b', 'a', 'e', 'd'];
const wordy = ['a', 'b', 'c', 'a', 'd', 'f'];
console.log(lcs(wordx, wordy)); // acad

贪心算法

   贪心算法遵循一种近似解决问题的技术,期盼通过每个阶段的局部最优选择,从而达到全局的最优。它不像动态规划算法那样计算更大的格局。

最少硬币找零

  我们来看看如何用贪心算法解决前面提到过的最少硬币找零问题。

function mincoinchange(coins, amount) {
    const change = [];
    let total = 0;
    for (let i = coins.length - 1; i >= 0; i--) {
        const coin = coins[i];
        while (total + coin <= amount) {
            change.push(coin);
            total += coin;
        }
    }
    return change;
}

const result = mincoinchange([1, 5, 10, 25], 36);
console.log(result); // [ 25, 10, 1 ]

  前提是coins数组已经按从小到大排好序了,贪心算法从最大值开始尝试,如果该值不满足条件(要找零的钱数),则继续向下找,直到找到满足条件的所有值。以上算法并不能满足所有情况下找出最优方案,例如下面这种情况:

const result = mincoinchange([1, 2, 5, 9, 10], 18);
console.log(result); // [ 10, 5, 2, 1 ]

  给出的结果[10, 5, 2, 1]并不是最优方案,最优方案应该是[9, 9]。

  与动态规划相比,贪心算法更简单、效率更高。但是其结果并不总是最理想的。但是综合看来,它相对执行时间来说,输出一个可以接受的结果。

背包问题

 

物品# 重量 价值
1 2 3
2 3 4
3 4 5

  在动态规划的例子里,假定背包的容量为5,最佳方案是往背包里装入物品1和物品2,总价值为7。在贪心算法中,我们需要考虑分数的情况,假定背包的容量为6,装入物品1和物品2之后,剩余容量为1,可以装入1/4的物品3,总价值为3+4+0.25×5=8.25。我们来看看具体的实现代码:

function knapsack(capacity, weights, values) {
    const n = values.length;
    let load = 0;
    let val = 0;
    for (let i = 0; i < n && load < capacity; i++) {
        if (weights[i] <= capacity - load) {
            val += values[i];
            load += weights[i];
            console.log(`物品${i + 1},重量:${weights[i]},价值:${values[i]}`);
        } else {
            const r = (capacity - load) / weights[i];
            val += r * values[i];
            load += weights[i];
            console.log(`物品${i + 1}的${r},重量:${r * weights[i]},价值:${val}`);
        }
    }

    return val;
}

  从第一个物品开始遍历,如果总重量小于背包的容量,则继续迭代,装入物品。如果物品可以完整地装入背包,则将其价值和重量分别计入到变量val和load中,同时打印装入物品的信息。如果物品不能完整地装入背包,计算能够装入的比例r,然后将这个比例所对应的价值和重量分别计入到变量val和load中,同时打印物品的信息。最终输出总的价值val。下面是测试结果:

const capacity = 6;
const weights = [2, 3, 4];
const values = [3, 4, 5];
console.log(knapsack(capacity, weights, values));
物品1,重量:2,价值:3
物品2,重量:3,价值:4
物品3的0.25,重量:1,价值:8.25
8.25

  在动态规划算法中,如果将背包的容量也设定为6,计算结果则为8。

最长公共子序列(lcs)

  最后我们再来看看如何用贪心算法解决lcs的问题。下面的代码返回了两个给定数组中的lcs的长度:

function lcs(wordx, wordy, m = wordx.length, n = wordy.length) {
    if (m === 0 || n === 0) {
        return 0;
    }
    if (wordx[m - 1] === wordy[n - 1]) {
        return 1 + lcs(wordx, wordy, m - 1, n - 1);
    }
    const a = lcs(wordx, wordy, m, n - 1);
    const b = lcs(wordx, wordy, m - 1, n);
    return a > b ? a : b;
}

const wordx = ['a', 'c', 'b', 'a', 'e', 'd'];
const wordy = ['a', 'b', 'c', 'a', 'd', 'f'];
console.log(lcs(wordx, wordy)); // 4