欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

基于Python对数据shape的常见操作详解

程序员文章站 2022-05-02 12:04:02
这一阵在用python做drl建模的时候,尤其是在配合使用tensorflow的时候,加上tensorflow是先搭框架再跑数据,所以调试起来很不方便,经常遇到输入数据或者...

这一阵在用python做drl建模的时候,尤其是在配合使用tensorflow的时候,加上tensorflow是先搭框架再跑数据,所以调试起来很不方便,经常遇到输入数据或者中间数据shape的类型不统一,导致一些op老是报错。而且由于水平菜,所以一些常用的数据shape转换操作也经常百度了还是忘,所以想再整理一下。

一、数据的基本属性

求一组数据的长度

a = [1,2,3,4,5,6,7,8,9,10,11,12]
print(len(a))
print(np.size(a))

求一组数据的shape

list是没有shape属性的,所以需要把它转换成np或者使用np.shape()

b = [[1,2,3],[4,5,6],[7,8,9]]
print(np.shape(b))
print(np.array(b).shape)

二、数据的拼接

append是直接将数组或者数据直接追加到下一个元素的位置,而extend是将数据最外层的[]去掉后追加。

c = [1,1,1,1]
d = [[2,2],[[2,2],[2,2]]]
c.append([1,2,3])
d.extend([1,2,3])

[1, 1, 1, 1, [1, 2, 3]]
[[2, 2], [[2, 2], [2, 2]], 1, 2, 3]

另外也可以通过numpy中的方法来进行拼接

其中np.concatenate()的作用更偏向与数据的连接,通过其中的axis参数可以进行指定行列的拼接。

而np.append()的作用是将value b追加到arr a中。

c = np.concatenate((a, b))
d = np.append(a,b)
print(c)
print(d)

[1 1 1 1 2 2 2 2]
[1 1 1 1 2 2 2 2]

三、数据的shape的转换

1、转置

数据的转置也经常会用到,通常可以用到numpy的transpose()方法或者直接将数据转换为numpy array后用.t或者用reshape()方法。

a = [[1,1,1],
   [1,1,1]]
b = [[2,2,2],
   [2,2,2]]
c = [[3,3,3],
   [3,3,3]]
b = np.array(b)
c = np.array(c)

print(np.transpose(a))
print(b.t)
print(np.reshape(c, (c.shape[1], c.shape[0])))

[[1 1]
 [1 1]
 [1 1]]
[[2 2]
 [2 2]
 [2 2]]
[[3 3]
 [3 3]
 [3 3]]

2、数据展开

如果是一个多维的数组,可以直接使用np.reshape(-1)来进行转换,reshape是一个很好用的函数,其中的参数含义后面会讲到。

c = [[[3,3,3],
   [3,3,3]],
   [[2,2,2],
   [2,2,2]]]

print(np.reshape(c, -1))

[3 3 3 3 3 3 2 2 2 2 2 2]

3、维度转换

有时候可能会用到将一个一维的数组转换为二维,或者是在column方向或row方向上增加维度。

当给col方向增加维度时,可以直接arr[:,np.newaxis],

给row方向增加维度时,可以arr[np.newaxis,:]

另外,这里的np.newaxis可以这样理解:

一个[1,2,3,4,5]数组的shape是(5,),如果对它[:,np.newaix]的话,得到的shape就是(5,1)

对它[np.newaix, :]的话,得到的结果就是(1,5)。所以说newaxis加在哪个位置,哪个位置相应的维度就会产生一个新的维度。

a = np.array([1,1,1,1])

b = a[np.newaxis,:]
c = a[:,np.newaxis]

print(b)
print(c)

[[1 1 1 1]]
[[1]
 [1]
 [1]
 [1]]

另外再说一个将多维数组转换为一维的两种方法:arr.ravel()和arr.flatten()。

两者的不同之处在于arr.flatten()返回的是arr展开后的数组的复制,而arr.ravel()返回的是arr展开后的本身。

一个是对值的操作,另一个是对地址的操作。

类似c、c++中的指针。

a = np.array([[1,2,3]])
b = np.array([[1,2,3]])
a1 = a.flatten()
b1 = b.ravel()
print(a)
print(b)
a1[0] = 8
b1[0] = 8
print(a)
print(b)

[[1 2 3]]
[[1 2 3]]
[[1 2 3]]
[[8 2 3]]

4、reshape

def reshape(a, newshape, order='c'):

其中newshape参数可以传入一个[]或者tuple。

当数据的形状不确定时,如果想转换为1行,列数不确定的话,newshape可以传入(1, -1);

如果想转换为1列,行数不确定的话,newshape可以传入(-1, 1);

同理如果是2列或者2行的话,就是(-1, 2)或者(2,-1)。

其中-1代表的是一个模糊控制,就是不确定的意思。

a = [[1,1,1],
   [1,1,1]]
b = [[2,2,2],
   [2,2,2]]
c = [[[3,3,3],
   [3,3,3]],
   [[2,2,2],
   [2,2,2]]]

print(np.reshape(c, [-1, 1]))
print(np.reshape(b, [-1, 1]))
print(np.reshape(c, [2, -1]))

[[3]
 [3]
 [3]
 [3]
 [3]
 [3]
 [2]
 [2]
 [2]
 [2]
 [2]
 [2]]
[[2]
 [2]
 [2]
 [2]
 [2]
 [2]]
[[3 3 3 3 3 3]
 [2 2 2 2 2 2]]

以上这篇基于python对数据shape的常见操作详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。