unity实现贴图矩阵运算(旋转平移缩放)
程序员文章站
2022-04-29 21:18:06
我们在shader中对贴图处理时,有时候会有一些比较复杂的运算,比方说三角函数,开方等,一般情况下,如果可以在越上层做运算,性能会越高。c#> vertex > fragment因此,考虑...
我们在shader中对贴图处理时,有时候会有一些比较复杂的运算,比方说三角函数,开方等,一般情况下,如果可以在越上层做运算,性能会越高。c# > vertex > fragment
因此,考虑到贴图的旋转用到的三角函数,可以使用在c#中传入旋转矩阵得到,然后使用uv直接乘以矩阵就可以了。
封装了vmatrix4x4,分享一下:
using unityengine; namespace d11.skin { public class vmatrix { public float[,] m; public vmatrix() { m = new float[4, 4]; m[0, 0] = 0.0f; m[0, 1] = 0.0f; m[0, 2] = 0.0f; m[0, 3] = 0.0f; m[1, 0] = 0.0f; m[1, 1] = 0.0f; m[1, 2] = 0.0f; m[1, 3] = 0.0f; m[2, 0] = 0.0f; m[2, 1] = 0.0f; m[2, 2] = 0.0f; m[2, 3] = 0.0f; m[3, 0] = 0.0f; m[3, 1] = 0.0f; m[3, 2] = 0.0f; m[3, 3] = 0.0f; } public static void matrixsetidentity(vmatrix matrix) { matrix.m[0,0] = 1.0f; matrix.m[0,1] = 0.0f; matrix.m[0,2] = 0.0f; matrix.m[0,3] = 0.0f; matrix.m[1,0] = 0.0f; matrix.m[1,1] = 1.0f; matrix.m[1,2] = 0.0f; matrix.m[1,3] = 0.0f; matrix.m[2,0] = 0.0f; matrix.m[2,1] = 0.0f; matrix.m[2,2] = 1.0f; matrix.m[2,3] = 0.0f; matrix.m[3,0] = 0.0f; matrix.m[3,1] = 0.0f; matrix.m[3,2] = 0.0f; matrix.m[3,3] = 1.0f; } public static void matrixbuildtranslation(vmatrix matrix, float x, float y, float z) { matrixsetidentity(matrix); matrix.m[0,3] = x; matrix.m[1,3] = y; matrix.m[2,3] = z; } public static void matrixbuildtranslation(vmatrix matrix, vector3 vec) { matrixsetidentity(matrix); matrix.m[0, 3] = vec.x; matrix.m[1, 3] = vec.y; matrix.m[2, 3] = vec.z; } public static void matrixbuildscale(vmatrix matrix, float x, float y, float z) { matrix.m[0, 0] = x; matrix.m[0, 1] = 0.0f; matrix.m[0, 2] = 0.0f; matrix.m[0, 3] = 0.0f; matrix.m[1, 0] = 0.0f; matrix.m[1, 1] = y; matrix.m[1, 2] = 0.0f; matrix.m[1, 3] = 0.0f; matrix.m[2, 0] = 0.0f; matrix.m[2, 1] = 0.0f; matrix.m[2, 2] = z; matrix.m[2, 3] = 0.0f; matrix.m[3, 0] = 0.0f; matrix.m[3, 1] = 0.0f; matrix.m[3, 2] = 0.0f; matrix.m[3, 3] = 1.0f; } public static void matrixbuildscale(vmatrix matrix, vector3 scale) { matrixbuildscale(matrix, scale.x, scale.y, scale.z); } public static void matrixbuildrotate(vmatrix matrix, float angledegrees) { float radians = angledegrees * (mathf.pi / 180.0f); float fsin = mathf.sin(radians); float fcos = mathf.cos(radians); matrix.m[0, 0] = fcos; matrix.m[0, 1] = -fsin; matrix.m[0, 2] = 0.0f; matrix.m[0, 3] = 0.0f; matrix.m[1, 0] = fsin; matrix.m[1, 1] = fcos; matrix.m[1, 2] = 0.0f; matrix.m[1, 3] = 0.0f; matrix.m[2, 0] = 0.0f; matrix.m[2, 1] = 0.0f; matrix.m[2, 2] = 1.0f; matrix.m[2, 3] = 0.0f; matrix.m[3, 0] = 0.0f; matrix.m[3, 1] = 0.0f; matrix.m[3, 2] = 0.0f; matrix.m[3, 3] = 1.0f; } public static vmatrix matrixmultiply(vmatrix src1, vmatrix src2) { vmatrix dst = new vmatrix(); dst.m[0,0] = src1.m[0,0] * src2.m[0,0] + src1.m[0,1] * src2.m[1,0] + src1.m[0,2] * src2.m[2,0] + src1.m[0,3] * src2.m[3,0]; dst.m[0,1] = src1.m[0,0] * src2.m[0,1] + src1.m[0,1] * src2.m[1,1] + src1.m[0,2] * src2.m[2,1] + src1.m[0,3] * src2.m[3,1]; dst.m[0,2] = src1.m[0,0] * src2.m[0,2] + src1.m[0,1] * src2.m[1,2] + src1.m[0,2] * src2.m[2,2] + src1.m[0,3] * src2.m[3,2]; dst.m[0,3] = src1.m[0,0] * src2.m[0,3] + src1.m[0,1] * src2.m[1,3] + src1.m[0,2] * src2.m[2,3] + src1.m[0,3] * src2.m[3,3]; dst.m[1,0] = src1.m[1,0] * src2.m[0,0] + src1.m[1,1] * src2.m[1,0] + src1.m[1,2] * src2.m[2,0] + src1.m[1,3] * src2.m[3,0]; dst.m[1,1] = src1.m[1,0] * src2.m[0,1] + src1.m[1,1] * src2.m[1,1] + src1.m[1,2] * src2.m[2,1] + src1.m[1,3] * src2.m[3,1]; dst.m[1,2] = src1.m[1,0] * src2.m[0,2] + src1.m[1,1] * src2.m[1,2] + src1.m[1,2] * src2.m[2,2] + src1.m[1,3] * src2.m[3,2]; dst.m[1,3] = src1.m[1,0] * src2.m[0,3] + src1.m[1,1] * src2.m[1,3] + src1.m[1,2] * src2.m[2,3] + src1.m[1,3] * src2.m[3,3]; dst.m[2,0] = src1.m[2,0] * src2.m[0,0] + src1.m[2,1] * src2.m[1,0] + src1.m[2,2] * src2.m[2,0] + src1.m[2,3] * src2.m[3,0]; dst.m[2,1] = src1.m[2,0] * src2.m[0,1] + src1.m[2,1] * src2.m[1,1] + src1.m[2,2] * src2.m[2,1] + src1.m[2,3] * src2.m[3,1]; dst.m[2,2] = src1.m[2,0] * src2.m[0,2] + src1.m[2,1] * src2.m[1,2] + src1.m[2,2] * src2.m[2,2] + src1.m[2,3] * src2.m[3,2]; dst.m[2,3] = src1.m[2,0] * src2.m[0,3] + src1.m[2,1] * src2.m[1,3] + src1.m[2,2] * src2.m[2,3] + src1.m[2,3] * src2.m[3,3]; dst.m[3,0] = src1.m[3,0] * src2.m[0,0] + src1.m[3,1] * src2.m[1,0] + src1.m[3,2] * src2.m[2,0] + src1.m[3,3] * src2.m[3,0]; dst.m[3,1] = src1.m[3,0] * src2.m[0,1] + src1.m[3,1] * src2.m[1,1] + src1.m[3,2] * src2.m[2,1] + src1.m[3,3] * src2.m[3,1]; dst.m[3,2] = src1.m[3,0] * src2.m[0,2] + src1.m[3,1] * src2.m[1,2] + src1.m[3,2] * src2.m[2,2] + src1.m[3,3] * src2.m[3,2]; dst.m[3,3] = src1.m[3,0] * src2.m[0,3] + src1.m[3,1] * src2.m[1,3] + src1.m[3,2] * src2.m[2,3] + src1.m[3,3] * src2.m[3,3]; return dst; } public vector4 matrixgetcol(int ncol) { system.diagnostics.debug.assert((ncol >= 0) && (ncol <= 3)); vector4 vec; vec.x = m[0,ncol]; vec.y = m[1,ncol]; vec.z = m[2,ncol]; vec.w = m[3,ncol]; return vec; } public vector4 matrixgetrow(int nrow) { system.diagnostics.debug.assert((nrow >= 0) && (nrow <= 3)); vector4 vec; vec.x = m[nrow, 0]; vec.y = m[nrow, 1]; vec.z = m[nrow, 2]; vec.w = m[nrow, 3]; return vec; } public static vmatrix getsrtmatrix(vector2 scale, float rotation, vector2 center, vector2 translation) { vmatrix mat = new vmatrix(); vmatrix temp = new vmatrix(); matrixbuildscale(mat, scale.x, scale.y, 1.0f); matrixbuildtranslation(temp, -center); mat = matrixmultiply(temp, mat); matrixbuildrotate(temp, rotation); mat = matrixmultiply(temp, mat); matrixbuildtranslation(temp, center.x + translation.x, center.y - translation.y, 0.0f); mat = matrixmultiply(temp, mat); return mat; } } }
调用方式:
vmatrix matrix = vmatrix.getsrtmatrix(scale, -m_cur_rotate, center, translation + translationextra); m_crttexture.material.setvector("_srt0", matrix.matrixgetrow(0)); m_crttexture.material.setvector("_srt1", matrix.matrixgetrow(1));
shader使用:
properties { _srt0("patternsrt0", vector) = (1, 1, 1, 1) _srt1("patternsrt1", vector) = (1, 1, 1, 1) } pass { float4 _srt0; float4 _srt1; float4 get_pattern_color(float2 uv) { float2 uv2; uv2.x = dot(uv, _srt0.xy) + _srt0.w; uv2.y = dot(uv, _srt1.xy) + _srt1.w; return tex2d(_patterntexture, uv2); } }
感兴趣的可以自己试一试
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
上一篇: 详解c# 多态
下一篇: APP再也杀不出黑马了 各领域趋于饱和