欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

unity实现贴图矩阵运算(旋转平移缩放)

程序员文章站 2022-08-30 12:23:24
我们在shader中对贴图处理时,有时候会有一些比较复杂的运算,比方说三角函数,开方等,一般情况下,如果可以在越上层做运算,性能会越高。c#> vertex > fragment因此,考虑...

我们在shader中对贴图处理时,有时候会有一些比较复杂的运算,比方说三角函数,开方等,一般情况下,如果可以在越上层做运算,性能会越高。c# > vertex > fragment

因此,考虑到贴图的旋转用到的三角函数,可以使用在c#中传入旋转矩阵得到,然后使用uv直接乘以矩阵就可以了。

封装了vmatrix4x4,分享一下:

using unityengine;
 
namespace d11.skin
{
 public class vmatrix
 {
  public float[,] m;
 
  public vmatrix()
  {
   m = new float[4, 4];
   m[0, 0] = 0.0f; m[0, 1] = 0.0f; m[0, 2] = 0.0f; m[0, 3] = 0.0f;
   m[1, 0] = 0.0f; m[1, 1] = 0.0f; m[1, 2] = 0.0f; m[1, 3] = 0.0f;
   m[2, 0] = 0.0f; m[2, 1] = 0.0f; m[2, 2] = 0.0f; m[2, 3] = 0.0f;
   m[3, 0] = 0.0f; m[3, 1] = 0.0f; m[3, 2] = 0.0f; m[3, 3] = 0.0f;
  }
 
  public static void matrixsetidentity(vmatrix matrix)
  {
   matrix.m[0,0] = 1.0f; matrix.m[0,1] = 0.0f; matrix.m[0,2] = 0.0f; matrix.m[0,3] = 0.0f;
   matrix.m[1,0] = 0.0f; matrix.m[1,1] = 1.0f; matrix.m[1,2] = 0.0f; matrix.m[1,3] = 0.0f;
   matrix.m[2,0] = 0.0f; matrix.m[2,1] = 0.0f; matrix.m[2,2] = 1.0f; matrix.m[2,3] = 0.0f;
   matrix.m[3,0] = 0.0f; matrix.m[3,1] = 0.0f; matrix.m[3,2] = 0.0f; matrix.m[3,3] = 1.0f;
  }
 
  public static void matrixbuildtranslation(vmatrix matrix, float x, float y, float z)
  {
   matrixsetidentity(matrix);
   matrix.m[0,3] = x;
   matrix.m[1,3] = y;
   matrix.m[2,3] = z;
  }
 
  public static void matrixbuildtranslation(vmatrix matrix, vector3 vec)
  {
   matrixsetidentity(matrix);
   matrix.m[0, 3] = vec.x;
   matrix.m[1, 3] = vec.y;
   matrix.m[2, 3] = vec.z;
  }
 
  public static void matrixbuildscale(vmatrix matrix, float x, float y, float z)
  {
   matrix.m[0, 0] = x; matrix.m[0, 1] = 0.0f; matrix.m[0, 2] = 0.0f; matrix.m[0, 3] = 0.0f;
   matrix.m[1, 0] = 0.0f; matrix.m[1, 1] = y; matrix.m[1, 2] = 0.0f; matrix.m[1, 3] = 0.0f;
   matrix.m[2, 0] = 0.0f; matrix.m[2, 1] = 0.0f; matrix.m[2, 2] = z; matrix.m[2, 3] = 0.0f;
   matrix.m[3, 0] = 0.0f; matrix.m[3, 1] = 0.0f; matrix.m[3, 2] = 0.0f; matrix.m[3, 3] = 1.0f;
  }
 
  public static void matrixbuildscale(vmatrix matrix, vector3 scale)
  {
   matrixbuildscale(matrix, scale.x, scale.y, scale.z);
  }
 
  public static void matrixbuildrotate(vmatrix matrix, float angledegrees)
  {
   float radians = angledegrees * (mathf.pi / 180.0f);
 
   float fsin = mathf.sin(radians);
   float fcos = mathf.cos(radians);
   matrix.m[0, 0] = fcos; matrix.m[0, 1] = -fsin; matrix.m[0, 2] = 0.0f; matrix.m[0, 3] = 0.0f;
   matrix.m[1, 0] = fsin; matrix.m[1, 1] = fcos; matrix.m[1, 2] = 0.0f; matrix.m[1, 3] = 0.0f;
   matrix.m[2, 0] = 0.0f; matrix.m[2, 1] = 0.0f; matrix.m[2, 2] = 1.0f; matrix.m[2, 3] = 0.0f;
   matrix.m[3, 0] = 0.0f; matrix.m[3, 1] = 0.0f; matrix.m[3, 2] = 0.0f; matrix.m[3, 3] = 1.0f;
  }
 
  public static vmatrix matrixmultiply(vmatrix src1, vmatrix src2)
  {
   vmatrix dst = new vmatrix();
   dst.m[0,0] = src1.m[0,0] * src2.m[0,0] + src1.m[0,1] * src2.m[1,0] + src1.m[0,2] * src2.m[2,0] + src1.m[0,3] * src2.m[3,0];
   dst.m[0,1] = src1.m[0,0] * src2.m[0,1] + src1.m[0,1] * src2.m[1,1] + src1.m[0,2] * src2.m[2,1] + src1.m[0,3] * src2.m[3,1];
   dst.m[0,2] = src1.m[0,0] * src2.m[0,2] + src1.m[0,1] * src2.m[1,2] + src1.m[0,2] * src2.m[2,2] + src1.m[0,3] * src2.m[3,2];
   dst.m[0,3] = src1.m[0,0] * src2.m[0,3] + src1.m[0,1] * src2.m[1,3] + src1.m[0,2] * src2.m[2,3] + src1.m[0,3] * src2.m[3,3];
 
   dst.m[1,0] = src1.m[1,0] * src2.m[0,0] + src1.m[1,1] * src2.m[1,0] + src1.m[1,2] * src2.m[2,0] + src1.m[1,3] * src2.m[3,0];
   dst.m[1,1] = src1.m[1,0] * src2.m[0,1] + src1.m[1,1] * src2.m[1,1] + src1.m[1,2] * src2.m[2,1] + src1.m[1,3] * src2.m[3,1];
   dst.m[1,2] = src1.m[1,0] * src2.m[0,2] + src1.m[1,1] * src2.m[1,2] + src1.m[1,2] * src2.m[2,2] + src1.m[1,3] * src2.m[3,2];
   dst.m[1,3] = src1.m[1,0] * src2.m[0,3] + src1.m[1,1] * src2.m[1,3] + src1.m[1,2] * src2.m[2,3] + src1.m[1,3] * src2.m[3,3];
 
   dst.m[2,0] = src1.m[2,0] * src2.m[0,0] + src1.m[2,1] * src2.m[1,0] + src1.m[2,2] * src2.m[2,0] + src1.m[2,3] * src2.m[3,0];
   dst.m[2,1] = src1.m[2,0] * src2.m[0,1] + src1.m[2,1] * src2.m[1,1] + src1.m[2,2] * src2.m[2,1] + src1.m[2,3] * src2.m[3,1];
   dst.m[2,2] = src1.m[2,0] * src2.m[0,2] + src1.m[2,1] * src2.m[1,2] + src1.m[2,2] * src2.m[2,2] + src1.m[2,3] * src2.m[3,2];
   dst.m[2,3] = src1.m[2,0] * src2.m[0,3] + src1.m[2,1] * src2.m[1,3] + src1.m[2,2] * src2.m[2,3] + src1.m[2,3] * src2.m[3,3];
 
   dst.m[3,0] = src1.m[3,0] * src2.m[0,0] + src1.m[3,1] * src2.m[1,0] + src1.m[3,2] * src2.m[2,0] + src1.m[3,3] * src2.m[3,0];
   dst.m[3,1] = src1.m[3,0] * src2.m[0,1] + src1.m[3,1] * src2.m[1,1] + src1.m[3,2] * src2.m[2,1] + src1.m[3,3] * src2.m[3,1];
   dst.m[3,2] = src1.m[3,0] * src2.m[0,2] + src1.m[3,1] * src2.m[1,2] + src1.m[3,2] * src2.m[2,2] + src1.m[3,3] * src2.m[3,2];
   dst.m[3,3] = src1.m[3,0] * src2.m[0,3] + src1.m[3,1] * src2.m[1,3] + src1.m[3,2] * src2.m[2,3] + src1.m[3,3] * src2.m[3,3];
   return dst;
  }
 
  public vector4 matrixgetcol(int ncol)
  {
   system.diagnostics.debug.assert((ncol >= 0) && (ncol <= 3));
 
   vector4 vec;
   vec.x = m[0,ncol];
   vec.y = m[1,ncol];
   vec.z = m[2,ncol];
   vec.w = m[3,ncol];
   return vec;
  }
 
  public vector4 matrixgetrow(int nrow)
  {
   system.diagnostics.debug.assert((nrow >= 0) && (nrow <= 3));
   vector4 vec;
   vec.x = m[nrow, 0];
   vec.y = m[nrow, 1];
   vec.z = m[nrow, 2];
   vec.w = m[nrow, 3];
   return vec;
  }
 
  public static vmatrix getsrtmatrix(vector2 scale, float rotation, vector2 center, vector2 translation)
  {
   vmatrix mat = new vmatrix();
   vmatrix temp = new vmatrix();
 
   matrixbuildscale(mat, scale.x, scale.y, 1.0f);
   matrixbuildtranslation(temp, -center);
   mat = matrixmultiply(temp, mat);
   matrixbuildrotate(temp, rotation);
   mat = matrixmultiply(temp, mat);
   matrixbuildtranslation(temp, center.x + translation.x, center.y - translation.y, 0.0f);
   mat = matrixmultiply(temp, mat);
   return mat;
  }
 }
}

调用方式:

vmatrix matrix = vmatrix.getsrtmatrix(scale, -m_cur_rotate, center, translation + translationextra);
m_crttexture.material.setvector("_srt0", matrix.matrixgetrow(0));
m_crttexture.material.setvector("_srt1", matrix.matrixgetrow(1));

shader使用:

properties
{
 _srt0("patternsrt0", vector) = (1, 1, 1, 1)
 _srt1("patternsrt1", vector) = (1, 1, 1, 1)
}
 
pass
{
 float4 _srt0;
 float4 _srt1;
 
 float4 get_pattern_color(float2 uv)
 {
 float2 uv2;
 uv2.x = dot(uv, _srt0.xy) + _srt0.w;
 uv2.y = dot(uv, _srt1.xy) + _srt1.w;
 return tex2d(_patterntexture, uv2);
 }
}

感兴趣的可以自己试一试

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

相关标签: unity 矩阵