大数据Hadoop之MR Combiner案例实操
程序员文章站
2022-04-28 16:30:34
...
1.需求
统计过程中对每一个MapTask的输出进行局部汇总,以减小网络传输量即采用Combiner功能。
(1)数据输入
atguigu atguigu
ss ss
cls cls
jiao
banzhang
xue
hadoop
(2)期望输出数据
期望:Combine输入数据多,输出时经过合并,输出数据降低。
2.需求分析(我们采用方案一)
3.案例实操
Combiner
package com.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WCCombiner extends Reducer<Text, IntWritable, Text, IntWritable>{
IntWritable v = new IntWritable();
Text k = new Text();
@Override
protected void reduce(Text k, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
// 设置一个变量用来统计总数
int sum = 0;
// 遍历
for (IntWritable intWritable : values) {
sum += intWritable.get();
}
// 写出
v.set(sum);
context.write(k, v);
}
}
Mapper
package com.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WCMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
Text k = new Text();
IntWritable v = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// 1. 获取行数据
String line = value.toString();
// 2. 切分数据
String[] words = line.split(" ");
// 3. 封装对象
// 4. 循环写出
for (String word : words) {
k.set(word);
context.write(k, v);
}
}
}
Reducer
package com.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WCReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
@Override
protected void reduce(Text k, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
// 1. 定义个变量记录累加的和
int sum = 0;
// 2. 遍历values
for (IntWritable intWritable : values) {
sum += intWritable.get();
}
// 3. 写出
context.write(k, new IntWritable(sum));
}
}
Driver
package com.mapreduce.wordcount;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WCDriver {
public static void main(String[] args) throws Exception {
// 初始化args
args = new String[] { "D:\\hadoop-2.7.1\\winMR\\WordCount\\input",
"D:\\hadoop-2.7.1\\winMR\\WordCount\\output2" };
// 1. 获取job实例
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
// 2. 设置jar
job.setJarByClass(WCDriver.class);
// 3. 关联map和reduce
job.setMapperClass(WCMapper.class);
job.setReducerClass(WCReducer.class);
// 4. 设置map输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5. 设置最终输出的kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 8. 设置Combiner
job.setCombinerClass(WCCombiner.class);
// 6. 设置输入输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7. 提交job
job.waitForCompletion(true);
}
}
4. 输出结果
Combiner的input和output不再是0,你可以与没设置Combiner的WordCount案例比较一下,但是结果都是相同的。
上一篇: python缩进是强制吗