大数据Hadoop之Hadoop序列化案例实操
程序员文章站
2022-03-08 07:58:01
...
1.需求:
统计每一个手机号耗费的总上行流量、下行流量、总流量
(1)输入数据:
1 13736230513 192.196.100.1 www.atguigu.com 2481 24681 200
2 13846544121 192.196.100.2 264 0 200
3 13956435636 192.196.100.3 132 1512 200
4 13966251146 192.168.100.1 240 0 404
5 18271575951 192.168.100.2 www.atguigu.com 1527 2106 200
6 84188413 192.168.100.3 www.atguigu.com 4116 1432 200
7 13590439668 192.168.100.4 1116 954 200
8 15910133277 192.168.100.5 www.hao123.com 3156 2936 200
9 13729199489 192.168.100.6 240 0 200
10 13630577991 192.168.100.7 www.shouhu.com 6960 690 200
11 15043685818 192.168.100.8 www.baidu.com 3659 3538 200
12 15959002129 192.168.100.9 www.atguigu.com 1938 180 500
13 13560439638 192.168.100.10 918 4938 200
14 13470253144 192.168.100.11 180 180 200
15 13682846555 192.168.100.12 www.qq.com 1938 2910 200
16 13992314666 192.168.100.13 www.gaga.com 3008 3720 200
17 13509468723 192.168.100.14 www.qinghua.com 7335 110349 404
18 18390173782 192.168.100.15 www.sogou.com 9531 2412 200
19 13975057813 192.168.100.16 www.baidu.com 11058 48243 200
20 13768778790 192.168.100.17 120 120 200
21 13568436656 192.168.100.18 www.alibaba.com 2481 24681 200
22 13568436656 192.168.100.19 1116 954 200
(2)输入数据格式:
7 13560436666 120.196.100.99 1116 954 200
id 手机号码 网络ip 上行流量 下行流量 网络状态码
(3)期望输出数据格式:
13560436666 1116 954 2070
手机号码 上行流量 下行流量 总流量
2.需求分析:
3.编写MapReduce程序:
(1)编写流量统计的Bean对象:
package com.mapreduce.flowcount;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
public class FlowCountBean implements Writable{
private long upFlow; // 上行流量
private long downFlow; // 下行流量
private long sumFlow; // 总流量
// 空参构造器,为了反序列化时反射使用
public FlowCountBean() {
}
public FlowCountBean(long upFlow, long downFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
sumFlow = upFlow + downFlow;
}
// 反序列化方法
@Override
public void readFields(DataInput in) throws IOException {
// 注意反序列化时,要与序列化时一致
upFlow = in.readLong();
downFlow = in.readLong();
sumFlow = in.readLong();
}
// 序列化方法
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
@Override
public String toString() {
// 方便后续数据的使用,设置成\t间隔
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
}
(2)编写Mapper类:
package com.mapreduce.flowcount;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowCountBean>{
Text k = new Text();
FlowCountBean v = new FlowCountBean();
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// 1. 获取一行数据
String line = value.toString();
// 2. 切割数据
String[] fields = line.split("\t");
// 3. 封装对象
// 取出手机号
String phone = fields[1];
// 取出上行流量和下行流量
long upFlow = Long.parseLong(fields[fields.length - 3]);
long downFlow = Long.parseLong(fields[fields.length - 2]);
k.set(phone);
v.setUpFlow(upFlow);
v.setDownFlow(downFlow);
// 4. 写出
context.write(k, v);
}
}
(3)编写Reducer类:
package com.mapreduce.flowcount;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class FlowCountReduce extends Reducer<Text, FlowCountBean, Text, FlowCountBean>{
protected void reduce(Text k, Iterable<FlowCountBean> values, Context context)
throws java.io.IOException ,InterruptedException {
long sumUpFlow = 0;
long sumDownFlow = 0;
// 1. 遍历所有的bean,将其中的上行,下行流量分别累加
for (FlowCountBean flowCountBean : values) {
sumUpFlow += flowCountBean.getUpFlow();
sumDownFlow += flowCountBean.getDownFlow();
}
// 2. 封装对象
FlowCountBean v = new FlowCountBean(sumUpFlow, sumDownFlow);
// 3. 写出
context.write(k, v);
}
}
(4)编写Driver驱动类:
package com.mapreduce.flowcount;
import java.io.FileInputStream;
import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.FilterOutputFormat;
public class FlowCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
args = new String[] {"D:\\hadoop-2.7.1\\winMR\\FlowCount\\input", "D:\\hadoop-2.7.1\\winMR\\FlowCount\\output1"};
// 1. 过的job对象
Job job = Job.getInstance();
// 2. 设置jar路径
job.setJarByClass(FlowCountDriver.class);
// 3. 关联map和reduce
job.setMapperClass(FlowCountMapper.class);
job.setReducerClass(FlowCountReduce.class);
// 4. 设置map输出的k, v 类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowCountBean.class);
// 5. 设置最终输出的k, v 类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowCountBean.class);
// 6. 设置输入输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7. 提交job
job.waitForCompletion(true);
}
}
4.输出结果:
(1)文件位置:
(2)文件内容:
上一篇: NC65 如何在系统单据上加自定义按钮
下一篇: Hadoop实战之倒排索引的MR实现
推荐阅读
-
大数据Hadoop之KeyValueTextInputFormat使用案例
-
大数据hadoop3.1.3——Hadoop序列化以及案例操作
-
Hadoop的序列化与反序列化实操
-
Hadoop序列化与反序列化的3种方式实操
-
浅谈Hadoop序列化接口Writable及实操
-
大数据Hadoop之MR自定义排序 全排序案例实操
-
大数据Hadoop之MR Partition分区案例
-
大数据技术之_05_Hadoop学习_04_MapReduce_Hadoop企业优化+HDFS小文件优化方法+MapReduce扩展案例+倒排索引案例(多job串联)+TopN案例+找博客案例
-
大数据Hadoop之MR自定义排序 区内排序案例实操
-
大数据Hadoop之MR Combiner案例实操