欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Python爬取前程无忧十万条招聘数据

程序员文章站 2022-04-28 09:03:31
...

前言:本文是介绍利用代理IP池以及多线程完成前程无忧网站的是十万条招聘信息的采集工作,已适当控制采集频率,采集数据仅为了学习使用,采集十万条招聘信息大概需要十个小时。

起因是在知乎上看到另一个程序猿写的前程无忧的爬虫代码,对于他的一些反反爬虫处理措施抱有一丝怀疑态度,于是在他的代码的基础上进行改造,优化了线程的分配以及页面访问的频率,并加入了代理IP池的处理,优化了爬虫效率。

原始代码文章链接:https://zhuanlan.zhihu.com/p/146425439

首先,奉上本文依赖的基础的爬虫代码

def getdata(bot,top):
    for i in range(bot,top):
        print("正在爬取第" + str(i) + "页的数据")
        url0 = "https://search.51job.com/list/000000,000000,0000,00,9,99,%25E6%2595%25B0%25E6%258D%25AE,2,"
        url_end = ".html?"
        url = url0 + str(i) + url_end
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36'
        }
        html = requests.get(url, headers=headers)
        html.encoding = "gbk"
        etree = etree.HTML(html.text)
        # ①岗位名称
        JobName = etree.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@title')
        # ②公司名称
        CompanyName = etree.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t2"]/a[@target="_blank"]/@title')
        # ③工作地点
        Address = etree.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t3"]/text()')
        # ④工资
        sal = etree.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t4"]')
        salary = [i.text for i in sal]
        # ⑤发布时间
        ShowTime = etree.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t5"]/text()')
        # ⑥获取职位详情url
        DetailUrl = etree.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@href')
        OthersInfo = []
        JobDescribe = []
        CompanyType = []
        CompanySize = []
        Industry = []
        for i in range(len(DetailUrl)):
            htmlInfo = requests.get(DetailUrl[i], headers=headers)
            htmlInfo.encoding = "gbk"
            etreeInfo = etree.HTML(htmlInfo.text)
            # ⑦经验、学历信息等其他信息
            otherinfo = etreeInfo.xpath('//div[@class="tHeader tHjob"]//div[@class="cn"]/p[@class="msg ltype"]/text()')
            # ⑧岗位详情
            JobDescibe = etreeInfo.xpath('//div[@class="tBorderTop_box"]//div[@class="bmsg job_msg inbox"]/p/text()')
            # ⑨公司类型
            CompanyType = etreeInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[1]/@title')
            # ⑩公司规模(人数)
            CompanySize = etreeInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[2]/@title')
            # ⑪所属行业(公司)
            industry = etreeInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[3]/@title')
            #将上述信息存入列表中
            OthersInfo.append(otherinfo)
            JobDescribe.append(JobDescibe)
            CompanyType.append(CompanyType)
            CompanySize.append(CompanySize)
            Industry.append(industry)
            # 休眠
            time.sleep(0.5)
        # 一边爬取一边写入
        data = pd.DataFrame()
        data["岗位名称"] = JobName
        data["工作地点"] = Address
        data["公司名称"] = CompanyName
        data["工资"] = salary
        data["发布日期"] = ShowTime
        data["经验、学历"] = OthersInfo
        data["所属行业"] = Industry
        data["公司类型"] = CompanyType
        data["公司规模"] = CompanySize
        data["岗位描述"] = JobDescribe
        # 有些网页会跳转到公司官网,会返回空值,所以将其忽略
        try:
            data.to_csv("job_info.csv", mode="a+", header=None, index=None, encoding="gbk")
        except:
            print("跳转官网,无数据")
        time.sleep(1)
    print("数据爬取完成!!!!")

经过实验,发现这段代码存在以下几个问题,1.爬虫的效率低;2.爬虫的过程中报错有点频繁;3.访问网页的延时时间都是固定的,这样很容易被网站识别到

首先,解决第一个问题,原作者的解决方案是以多线程的方式处理,代码如下

import requests,time,warnings,threading
import pandas as pd
from lxml import etree
warnings.filterwarnings("ignore")

def getdata(bot,top):
    for i in range(bot,top):
        print("正在爬取第" + str(i) + "页的数据")
        url0 = "https://search.51job.com/list/000000,000000,0000,00,9,99,%25E6%2595%25B0%25E6%258D%25AE,2,"
        url_end = ".html?"
        url = url0 + str(i) + url_end
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36'
        }
        html = requests.get(url, headers=headers)
        html.encoding = "gbk"
        Html = etree.HTML(html.text)
        # ①岗位名称
        JobName = Html.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@title')
        # ②公司名称
        CompanyName = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t2"]/a[@target="_blank"]/@title')
        # ③工作地点
        Address = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t3"]/text()')
        # ④工资
        sal = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t4"]')
        salary = [i.text for i in sal]
        # ⑤发布时间
        ShowTime = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t5"]/text()')
        # ⑥获取职位详情url
        DetailUrl = Html.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@href')
        OthersInfo = []
        JobDescribe = []
        CompanyType = []
        CompanySize = []
        Industry = []
        for i in range(len(DetailUrl)):
            HtmlInfo = requests.get(DetailUrl[i], headers=headers)
            HtmlInfo.encoding = "gbk"
            HtmlInfo = etree.HTML(HtmlInfo.text)
            # ⑦经验、学历信息等其他信息
            otherinfo = HtmlInfo.xpath('//div[@class="tHeader tHjob"]//div[@class="cn"]/p[@class="msg ltype"]/text()')
            # ⑧岗位详情
            JobDescibe = HtmlInfo.xpath('//div[@class="tBorderTop_box"]//div[@class="bmsg job_msg inbox"]/p/text()')
            # ⑨公司类型
            ComType = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[1]/@title')
            # ⑩公司规模(人数)
            ComSize = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[2]/@title')
            # ⑪所属行业(公司)
            industry = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[3]/@title')
            #将上述信息存入列表中
            OthersInfo.append(otherinfo)
            JobDescribe.append(JobDescibe)
            CompanyType.append(ComType)
            CompanySize.append(ComSize)
            Industry.append(industry)
            # 休眠
            time.sleep(0.5)
        # 一边爬取一边写入
        data = pd.DataFrame()
        data["岗位名称"] = JobName
        data["工作地点"] = Address
        data["公司名称"] = CompanyName
        data["工资"] = salary
        data["发布日期"] = ShowTime
        data["经验、学历"] = OthersInfo
        data["所属行业"] = Industry
        data["公司类型"] = CompanyType
        data["公司规模"] = CompanySize
        data["岗位描述"] = JobDescribe
        # 有些网页会跳转到公司官网,会返回空值,所以将其忽略
        try:
            data.to_csv("job_info.csv", mode="a+", header=None, index=None, encoding="gbk")
        except:
            print("跳转官网,无数据")
        time.sleep(1)
    print("数据爬取完成!!!!")

threads = []
t1 = threading.Thread(target=getdata,args=(1,125))
threads.append(t1)
t2 = threading.Thread(target=getdata,args=(125,250))
threads.append(t2)
t3 = threading.Thread(target=getdata,args=(250,375))
threads.append(t3)
t4 = threading.Thread(target=getdata,args=(375,500))
threads.append(t4)
t5 = threading.Thread(target=getdata,args=(500,625))
threads.append(t5)
t6 = threading.Thread(target=getdata,args=(625,750))
threads.append(t6)
t7 = threading.Thread(target=getdata,args=(750,875))
threads.append(t7)
t8 = threading.Thread(target=getdata,args=(875,1000))
threads.append(t8)
t9 = threading.Thread(target=getdata,args=(1000,1125))
threads.append(t9)
t10 = threading.Thread(target=getdata,args=(1125,1250))
threads.append(t10)
t11 = threading.Thread(target=getdata,args=(1250,1375))
threads.append(t11)
t12 = threading.Thread(target=getdata,args=(1375,1500))
threads.append(t12)

if __name__ == "__main__":
    for t in threads:
        t.setDaemon(True)
        t.start()

确实增加了爬虫的速度,但这样做会有一个问题,就是爬虫的质量变差了,准确的说就是出错的几率提高了,被反爬虫策略识别到的次数增加了

首先从代码生成的角度,我优化了一下多线程的生成方法,允许用户自定义线程数作为参数传递,通过总的页数进行均分,如下所示

# 分配线程任务
def start_spider(num):
    start = 1
    end = 0
    count = 2000
    size = count//(num-1)
    print(size)
    while num > 1:
        end = start+size
        t = threading.Thread(target=getdata,args=(start,end))
        start = end+1
        t.start()
        num = num-1
    # 分配剩下的任务给新的线程
    if(end < count):
        start = end+1
        end = count
        t = threading.Thread(target=getdata,args=(start,end))
        t.start()

代码优化了之后,我们调整下爬虫时页面访问的延迟,改为一个随机数

            Industry.append(industry)
            # 休眠
            time.sleep(random.uniform(0.1,1))
        # 一边爬取一边写入
        data = pd.DataFrame()
        data["岗位名称"] = JobName
        data["工作地点"] = Address
        data["公司名称"] = CompanyName
        data["工资"] = salary
        data["发布日期"] = ShowTime
        data["经验、学历"] = OthersInfo
        data["所属行业"] = Industry
        data["公司类型"] = CompanyType
        data["公司规模"] = CompanySize
        data["岗位描述"] = JobDescribe
        # 有些网页会跳转到公司官网,会返回空值,所以将其忽略
        try:
            data.to_csv("job_info.csv", mode="a+", header=None, index=None, encoding="gbk")
        except:
            print("跳转官网,无数据")
        time.sleep(random.uniform(0.2,0.5))

最后利用代理IP池的方式来提高爬虫的质量

这里我分享一个很好用的代理IP池项目:https://github.com/jhao104/proxy_pool

这个项目在我等会分享的gitee开源项目中也拷贝了一份:https://gitee.com/chengrongkai/OpenSpiders

配置IP代理池的方法就参考这个项目的readme就行了

下面我奉上我对这个项目的代码改造

# 利用代理IP请求
def getHtml(url):
    # ....
    retry_count = 5
    proxy = get_proxy().get("proxy")
    while retry_count > 0:
        try:
            headers = {
                        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36'
                    }
            print("代理信息:{}".format(proxy))
            html = requests.get(url,headers=headers, proxies={"http": "http://{}".format(proxy)})
            # 使用代理访问
            return html
        except Exception:
            retry_count -= 1
    # 出错5次, 删除代理池中代理
    delete_proxy(proxy)
    return None

def getdata(bot,top):
    for i in range(bot,top):
        print("正在爬取第" + str(i) + "页的数据")
        url0 = "https://search.51job.com/list/000000,000000,0000,00,9,99,%25E6%2595%25B0%25E6%258D%25AE,2,"
        url_end = ".html?"
        url = url0 + str(i) + url_end
        html = getHtml(url)
        if(html == None):
            continue
        html.encoding = "gbk"
        Html = etree.HTML(html.text)
        # ①岗位名称
        JobName = Html.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@title')
        # ②公司名称
        CompanyName = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t2"]/a[@target="_blank"]/@title')
        # ③工作地点
        Address = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t3"]/text()')
        # ④工资
        sal = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t4"]')
        salary = [i.text for i in sal]
        # ⑤发布时间
        ShowTime = Html.xpath('//div[@class="dw_table"]/div[@class="el"]/span[@class="t5"]/text()')
        # ⑥获取职位详情url
        DetailUrl = Html.xpath('//div[@class="dw_table"]/div[@class="el"]//p/span/a[@target="_blank"]/@href')
        OthersInfo = []
        JobDescribe = []
        CompanyType = []
        CompanySize = []
        Industry = []
        for i in range(len(DetailUrl)):
            HtmlInfo = getHtml(DetailUrl[i])
            HtmlInfo.encoding = "gbk"
            HtmlInfo = etree.HTML(HtmlInfo.text)
            if(HtmlInfo == None):
                continue
            # ⑦经验、学历信息等其他信息
            otherinfo = HtmlInfo.xpath('//div[@class="tHeader tHjob"]//div[@class="cn"]/p[@class="msg ltype"]/text()')
            # ⑧岗位详情
            JobDescibe = HtmlInfo.xpath('//div[@class="tBorderTop_box"]//div[@class="bmsg job_msg inbox"]/p/text()')
            # ⑨公司类型
            ComType = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[1]/@title')
            # ⑩公司规模(人数)
            ComSize = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[2]/@title')
            # ⑪所属行业(公司)
            industry = HtmlInfo.xpath('//div[@class="tCompany_sidebar"]//div[@class="com_tag"]/p[3]/@title')
            #将上述信息存入列表中
            OthersInfo.append(otherinfo)
            JobDescribe.append(JobDescibe)
            CompanyType.append(ComType)
            CompanySize.append(ComSize)
            Industry.append(industry)
            # 休眠
            time.sleep(random.uniform(0.1,1))
        # 一边爬取一边写入
        data = pd.DataFrame()
        data["岗位名称"] = JobName
        data["工作地点"] = Address
        data["公司名称"] = CompanyName
        data["工资"] = salary
        data["发布日期"] = ShowTime
        data["经验、学历"] = OthersInfo
        data["所属行业"] = Industry
        data["公司类型"] = CompanyType
        data["公司规模"] = CompanySize
        data["岗位描述"] = JobDescribe
        # 有些网页会跳转到公司官网,会返回空值,所以将其忽略
        try:
            data.to_csv("job_info.csv", mode="a+", header=None, index=None, encoding="gbk")
        except:
            print("跳转官网,无数据")
        time.sleep(random.uniform(0.2,0.5))
        print("数据爬取完成!!!!")

我自己的机器测试了下,8个线程爬取了一个半小时,采集了一万五的数据,这里我有意的降慢了速度,大家可以根据实际情况进行调整,比如代理IP的重试可以去掉,如果出现无法采集就直接删除代理IP池中的该IP即可,另外线程数也可以按照电脑配置适当增加,在不计质量的情况下,应该可以达到一个小时一万五左右的采集量,单机的情况下,如果有更好的解决方案,欢迎留言,下篇文章将讲述如何对获取到的数据进行清洗以及数据分析。

采集到的数据如下

Python爬取前程无忧十万条招聘数据

本文所有代码均开源在https://gitee.com/chengrongkai/OpenSpiders

欢迎star,你的鼓励是我最大的动力

本文首发于https://www.bizhibihui.com/blog/article/45

相关标签: Python爬虫 python