欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

程序员文章站 2022-04-28 09:05:37
...

前言

利用python爬取在前程无忧网搜索python关键字出现的最新的招聘数据,保存到本地Excel,进行数据查看和预处理,然后利用matplotlib进行数据分析和可视化。

1. 爬取数据

目标url:

https://www.51job.com/

在前程无忧网输入关键字python,搜索有关的岗位数据。翻页查看这些招聘岗位信息,可以发现url翻页的规律。

检查网页源代码,可以找到想要提取的数据。

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

部分爬虫代码如下,完整见文末下载

    async def parse(self, text):
        # 正则匹配提取数据        try:
            job_name = re.findall('"job_name":"(.*?)",', text)          # 职位
            company_name = re.findall('"company_name":"(.*?)",', text)  # 公司名称
            salary = re.findall('"providesalary_text":"(.*?)",', text)
            salary = [i.replace('\\', '') for i in salary]              # 薪酬     去掉 \ 符号
            city = re.findall('"workarea_text":"(.*?)",', text)         # 城市
            job_welfare = re.findall('"jobwelf":"(.*?)",', text)        # 职位福利
            attribute_text = re.findall('"attribute_text":(.*?),"companysize_text"', text)
            attribute_text = ['|'.join(eval(i)) for i in attribute_text]
            companysize = re.findall('"companysize_text":"(.*?)",', text)  # 公司规模
            category = re.findall('"companyind_text":"(.*?)",', text)
            category = [i.replace('\\', '') for i in category]             # 公司所属行业  去掉 \ 符号
            datas = pd.DataFrame({'company_name': company_name, 'job_name': job_name, 'companysize': companysize, 'city': city, 'salary': salary, 'attribute_text': attribute_text, 'category': category, 'job_welfare': job_welfare})
            datas.to_csv('job_info.csv', mode='a+', index=False, header=True)
            logging.info({'company_name': company_name, 'job_name': job_name, 'company_size': companysize, 'city': city, 'salary': salary, 'attribute_text': attribute_text, 'category': category, 'job_welfare': job_welfare})
        except Exception as e:
            print(e)

运行效果如下:

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

爬取了200页的招聘数据,共10000条招聘信息,用时49.919s。

2. 数据查看和预处理

import pandas as pd
df = pd.read_csv('job_info.csv')
# 异步爬虫爬取数据时  datas.to_csv('job_info.csv', mode='a+', index=False, header=True)  删除多的列名
df1 = df[df['salary'] != 'salary']
# 查看前10行
df1.head(10)

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

# city那一列数据  处理为城市
# 按 - 分割   expand=True  0那一列重新赋值给df['city']
df1['city'] = df1['city'].str.split('-', expand=True)[0]
df1.head(10)

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

# 经验要求  学历要求   有的话是在attribute_text列里
df['attribute_text'].str.split('|', expand=True)

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

df1['experience'] = df1['attribute_text'].str.split('|', expand=True)[1]
df1['education'] = df1['attribute_text'].str.split('|', expand=True)[2]
df1

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

保存为已清洗数据

df1.to_csv('已清洗数据.csv', index=False)

查看索引、数据类型和内存信息

df2 = pd.read_csv('已清洗数据.csv')
df2.info()

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

3. 数据分析与可视化

(1) 柱形图展示招聘岗位数最多的城市Top10

代码如下:

import pandas as pd
import randomimport matplotlib.pyplot as plt
import matplotlib as mpl
df = pd.read_csv('已清洗数据.csv')
# 有些是异地招聘   过滤掉data = df[df['city'] != '异地招聘']['city'].value_counts()
city = list(data.index)[:10]    # 城市
nums = list(data.values)[:10]   # 岗位数
print(city)print(nums)colors = ['#FF0000', '#0000CD', '#00BFFF', '#008000', '#FF1493', '#FFD700', '#FF4500', '#00FA9A', '#191970', '#9932CC']
random.shuffle(colors)# 设置大小   像素plt.figure(figsize=(9, 6), dpi=100)
# 设置中文显示mpl.rcParams['font.family'] = 'SimHei'
# 绘制柱形图  设置柱条的宽度和颜色# color参数  每根柱条配置不同颜色plt.bar(city, nums, width=0.5, color=colors)
# 添加描述信息plt.title('招聘岗位数最多的城市Top10', fontsize=16)
plt.xlabel('城市', fontsize=12)
plt.ylabel('岗位数', fontsize=12)
# 展示图片plt.show()

运行效果如下:

['上海', '深圳', '广州', '北京', '杭州', '成都', '武汉', '南京', '苏州', '长沙']
[2015, 1359, 999, 674, 550, 466, 457, 444, 320, 211]

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

上海、深圳、广州、北京提供了很多岗位,杭州、成都、武汉、南京等城市的招聘岗位数量也比较可观。

(2) 计算岗位数据的薪酬,处理为多少K/月,划分薪酬区间,统计薪酬分布情况,饼图展示。

代码如下:

# 设置中文显示
mpl.rcParams['font.family'] = 'SimHei'
# 设置大小  像素plt.figure(figsize=(9, 6), dpi=100)
plt.axes(aspect='equal')   # 保证饼图是个正圆
explodes = [0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5]
plt.pie(nums, pctdistance=0.75, shadow=True,
  colors=colors, autopct='%.2f%%', explode=explodes,
  startangle=15, labeldistance=1.1,
  )# 设置图例   调节图例位置plt.legend(part_interval, bbox_to_anchor=(1.0, 1.0))
plt.title('招聘岗位的薪酬分布', fontsize=15)
plt.show()

运行效果如下:

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

招聘岗位给的薪酬在5K-10K和10K-15K区间所占的比例较大,也有一定比例的50K以上的高薪资岗位。

(3) 查看招聘岗位对学历的要求的情况,水平柱形图可视化。

mport pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
df = pd.read_csv(r'已清洗数据.csv')['education']
data = df.value_counts()labels = ['大专', '本科', '硕士', '博士']
nums = [data[i] for i in labels]
print(labels)print(nums)colors = ['cyan', 'red', 'yellow', 'blue']
# 设置中文显示
mpl.rcParams['font.family'] = 'SimHei'
# 设置显示风格
plt.style.use('ggplot')
# 设置大小  像素
plt.figure(figsize=(8, 6), dpi=100)
# 绘制水平柱状图 
plt.barh(labels, nums, height=0.36, color=colors)
plt.title('招聘岗位对学历的要求', fontsize=16)
plt.xlabel('岗位数量', fontsize=12)
plt.show()

运行效果如下:

['大专', '本科', '硕士', '博士']
[2052, 6513, 761, 45]

 

 

(4) 查看招聘岗位对工作经验的要求的情况,水平柱形图可视化。

由于得到的工作经验列里的数据并不规范,统计时需做特殊处理

代码如下:

# 设置中文显示
mpl.rcParams['font.family'] = 'SimHei'
# 设置显示风格plt.style.use('ggplot')
# 设置大小  像素plt.figure(figsize=(9, 6), dpi=100)
# 绘制水平柱状图plt.barh(labels, nums, height=0.5, color=colors)
plt.title('招聘岗位对工作经验的要求', fontsize=16)
plt.xlabel('岗位数量', fontsize=12)
plt.show()

运行效果如下:

3-4年经验      3361
2年经验        2114
1年经验        1471
5-7年经验      1338
在校生\/应届生     661
无需经验         417
本科           182
8-9年经验       105
10年以上经验       64
硕士            59
招1人           57
招若干人          57
招2人           42
大专            30
招3人           14
博士            11
招5人            9
招4人            5
招10人           2
招7人            1
Name: experience, dtype: int64
['无需经验', '1年经验', '2年经验', '3-4年经验', '5-7年经验', '8-9年经验', '10年以上经验']
[1260, 1530, 2114, 3372, 1338, 105, 64]

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

【】#### (5) 查看招聘公司所属行业的分布情况,词云展示。

代码如下:

import pandas as pd
import collectionsfrom wordcloud import WordCloud
import matplotlib.pyplot as plt
df = pd.read_csv(r'已清洗数据.csv')['category']
data = list(df.values)word_list = []for i in data:
    x = i.split('/')
    for j in x:
        word_list.append(j)word_counts = collections.Counter(word_list)# 绘制词云
my_cloud = WordCloud(
    background_color='white',  # 设置背景颜色  默认是black
    width=900, height=500,
    font_path='simhei.ttf',    # 设置字体  显示中文
    max_font_size=120,         # 设置字体最大值
    min_font_size=15,          # 设置子图最小值
    random_state=60            # 设置随机生成状态,即多少种配色方案
).generate_from_frequencies(word_counts)
# 显示生成的词云图片
plt.imshow(my_cloud, interpolation='bilinear')
# 显示设置词云图中无坐标轴
plt.axis('off')
plt.show()

运行效果如下:

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

(6) 查看招聘岗位的职位福利,词云展示。

代码与上文一致

运行效果如下:

爬取前程无忧python招聘数据,看我们是否真的“前程无忧”

 

职位福利关键词中出现频率较高的有五险一金、年终奖金、绩效奖金、定期体检、餐饮补贴等。

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

旧时晚风拂晓城 | 作者

凹凸数据 | 来源