欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

HDU-1527-取石子游戏

程序员文章站 2022-04-27 19:10:13
HDU-1527-取石子游戏 Problem Description 有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可...

HDU-1527-取石子游戏


Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

Sample Input
2 1
8 4
4 7

Sample Output
0
1
0

题目链接:HDU-1527

题目思路:

*威佐夫博弈*:有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。
—>前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。

可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k。

两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

判断(u,v)这个状态是否为奇异局势的方法:

int k = abs(u - v);
int n = (int)(k * (1 + sqrt(5)) / 2.0);
如果n == min(u,v),则是奇异局势

以下是代码:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include
#include 
#include 
#include 
#include 
#include 
using namespace std;
int main()
{
    int u,v;
    while(cin >> u >> v)
    {
        int k = abs(u - v);
        int n = (int)(k * (1 + sqrt(5)) / 2.0);
        if (n == min(u,v)) cout << "0\n";
        else cout << "1\n";
    }

    return 0;
}