欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

MXNET深度学习框架-18-使用gluon实现VGGNet

程序员文章站 2022-03-06 10:00:08
...

      VGGNet与上一章的AlexNet相比,模型更深,非线性表达能力更强,原因在于它将一系列7×77×75×55×5的卷积核变成了几个反复堆叠的3×33×3卷积,比如:2个3×33×3的卷积可以替代7×77×7的卷积、3个3×33×3的卷积可以替代5×55×5的卷积。这样做不仅不会增加参数量,反而会增加模型的非线性表达能力。

      下面使用mxnet实现VGGNet:

1、VGG Block实现:
      比如我有一100个卷积层(当然VGG不可能成功,因为会发生梯度消失等现象),难道说我要写1000行代码?所以需要定义一个Block,反正VGG全部用的是3×33×3的卷积。

def VGG_Block(num_convs,channels):
    net=gn.nn.Sequential()
    with net.name_scope():
        for i in range(num_convs):
            net.add(gn.nn.Conv2D(channels=channels,kernel_size=3,padding=1,
                                 activation="relu"))
        net.add(gn.nn.MaxPool2D(pool_size=(2,2),strides=2))
    return net

接下来实例化一个例子看看:

X=nd.random.normal(shape=(2,3,16,16))
blk=VGG_Block(2,128) # 2个堆叠的3X3卷积,相当于5X5
blk.initialize()
y=blk(X)
print(y.shape)

运行结果:
MXNET深度学习框架-18-使用gluon实现VGGNet
原维度是3,经过VGG Block之后,特征维度变成了128,由于使用了最大池化,所以大小由(16,16)变成了(8,8)。为什么要这么做?长宽减小,深就要增加,这样能保持基本的信息不变。

2、VGG-11实现
      包含8个卷积层、3个全连接:

# 它有5个卷积块,前2块使用单卷积层,而后3块使用双卷积层。
# 第一块的输出通道是64,之后每次对输出通道数翻倍,直到变为512。
# 因为这个网络使用了8个卷积层和3个全连接层,所以经常被称为VGG-11。
architecture=((1,64),(1,128),(2,256),(2,512),(2,512))
def vgg(architecture):
    net=gn.nn.Sequential()
    with net.name_scope():
        for (num_conv,num_feature) in architecture:
            net.add(VGG_Block(num_conv,num_feature))
        # 全连接
        net.add(gn.nn.Flatten())
        net.add(gn.nn.Dense(4096,activation="relu"))
        net.add(gn.nn.Dropout(0.5))
        net.add(gn.nn.Dense(4096, activation="relu"))
        net.add(gn.nn.Dropout(0.5))
        net.add(gn.nn.Dense(10))
    return net

我们运行一个实例看看维度:

net=vgg(architecture)
net.initialize()
X = nd.random.uniform(shape=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.name, 'output shape:\t', X.shape)

结果:
MXNET深度学习框架-18-使用gluon实现VGGNet
为了便于训练,我把全连接层的参数改小,图片输入大小也改小了,下面附上所有代码:

import mxnet.gluon as gn
import mxnet.autograd as ag
import mxnet.ndarray as nd
import mxnet.initializer as init
import mxnet as mx

# 反复堆叠的conv
def VGG_Block(num_convs,channels):
    net=gn.nn.Sequential()
    with net.name_scope():
        for i in range(num_convs):
            net.add(gn.nn.Conv2D(channels=channels,kernel_size=3,padding=1,
                                 activation="relu"))
        net.add(gn.nn.MaxPool2D(pool_size=(2,2),strides=2))
    return net
# 实例化一个例子看看
# X=nd.random.normal(shape=(2,3,16,16))
# blk=VGG_Block(2,128) # 2个堆叠的3X3卷积,相当于5X5
# blk.initialize()
# y=blk(X)
# print(y.shape)
# 现在我们构造一个VGG网络。
# 它有5个卷积块,前2块使用单卷积层,而后3块使用双卷积层。
# 第一块的输出通道是64,之后每次对输出通道数翻倍,直到变为512。
# 因为这个网络使用了8个卷积层和3个全连接层,所以经常被称为VGG-11。
ctx=mx.gpu()
architecture=((1,64),(1,128),(2,256),(2,512),(2,512))
def vgg(architecture):
    net=gn.nn.Sequential()
    with net.name_scope():
        for (num_conv,num_feature) in architecture:
            net.add(VGG_Block(num_conv,num_feature))
        # 全连接
        net.add(gn.nn.Flatten())
        net.add(gn.nn.Dense(256,activation="relu"))  # VGG的全连接层神经元太大,为便于训练改小一点
        net.add(gn.nn.Dropout(0.5))
        net.add(gn.nn.Dense(128, activation="relu"))
        net.add(gn.nn.Dropout(0.5))
        net.add(gn.nn.Dense(10))
    return net
net=vgg(architecture)
net.initialize(ctx=ctx,init=init.Xavier())
# print(net)
# X = nd.random.uniform(shape=(1, 1, 28, 28))
# for blk in net:
#     X = blk(X)
#     print(blk.name, 'output shape:\t', X.shape)

'''---读取数据和预处理---'''
def load_data_fashion_mnist(batch_size, resize=None):
    transformer = []
    if resize:
        transformer += [gn.data.vision.transforms.Resize(resize)]
    transformer += [gn.data.vision.transforms.ToTensor()]
    transformer = gn.data.vision.transforms.Compose(transformer)
    mnist_train = gn.data.vision.FashionMNIST(train=True)
    mnist_test = gn.data.vision.FashionMNIST(train=False)
    train_iter = gn.data.DataLoader(
        mnist_train.transform_first(transformer), batch_size, shuffle=True)
    test_iter = gn.data.DataLoader(
        mnist_test.transform_first(transformer), batch_size, shuffle=False)
    return train_iter, test_iter
batch_size=64
train_iter,test_iter=load_data_fashion_mnist(batch_size,resize=32) # 32,因为图片加大的话训练很慢,而且显存会吃不消
# softmax和交叉熵损失函数
# 由于将它们分开会导致数值不稳定(前两章博文的结果可以对比),所以直接使用gluon提供的API
cross_loss=gn.loss.SoftmaxCrossEntropyLoss()

# 定义准确率
def accuracy(output,label):
    return nd.mean(output.argmax(axis=1)==label).asscalar()

def evaluate_accuracy(data_iter,net):# 定义测试集准确率
    acc=0
    for data,label in data_iter:
        data, label = data.as_in_context(ctx), label.as_in_context(ctx)
        label = label.astype('float32')
        output=net(data)
        acc+=accuracy(output,label)
    return acc/len(data_iter)

# softmax和交叉熵分开的话数值可能会不稳定
cross_loss=gn.loss.SoftmaxCrossEntropyLoss()
# 优化
train_step=gn.Trainer(net.collect_params(),'sgd',{"learning_rate":0.01})

# 训练
lr=0.1
epochs=20
for epoch in range(epochs):
    n=0
    train_loss=0
    train_acc=0
    for image,y in train_iter:
        image, y = image.as_in_context(ctx), y.as_in_context(ctx)
        y = y.astype('float32')
        with ag.record():
            output = net(image)
            loss = cross_loss(output, y)
        loss.backward()
        train_step.step(batch_size)
        train_loss += nd.mean(loss).asscalar()
        train_acc += accuracy(output, y)

    test_acc = evaluate_accuracy(test_iter, net)
    print("Epoch %d, Loss:%f, Train acc:%f, Test acc:%f"
          %(epoch,train_loss/len(train_iter),train_acc/len(train_iter),test_acc))

训练结果:
MXNET深度学习框架-18-使用gluon实现VGGNet