MXNet动手学深度学习笔记:Gluon实现Dropout
程序员文章站
2022-07-13 10:53:06
...
#coding:utf-8
'''
两个隐藏层的多层感知机
'''
from mxnet import gluon
from mxnet import ndarray
from mxnet import autograd
import numpy as np
import matplotlib.pyplot as plt
from mxnet import nd
def transform(data,label):
return data.astype('float32') / 255,label.astype('float32')
def dropout(X,drop_probability):
keep_probability = 1 - drop_probability
assert 0 <= keep_probability <= 1
if keep_probability == 0:
return X.zeros_like()
# 随机选择一部分该层的输出
mask = nd.random.uniform(0,1.0,X.shape,ctx=X.context) < keep_probability
scale = 1 / keep_probability
return mask * X * scale
def get_text_labels(label):
text_labels = [
't-shirt','trouser','pullover','dress','coat',
'sandal','shirt','sneaker','bag','ankle boot'
]
return [text_labels[int(i)] for i in label]
# 定义精度计算
def accuracy(output,label):
return nd.mean(output.argmax(axis=1) == label).asscalar()
# 估计模型精度
def evaluate_accuracy(data_iterator,net):
acc = 0
for data,label in data_iterator:
output = net(data)
acc += accuracy(output,label)
return acc / len(data_iterator)
# 优化器
def SGD(params,lr):
for param in params:
param[:] = param - lr * param.grad
# 读取数据
mnist_train = gluon.data.vision.FashionMNIST(train=True,transform=transform)
mnist_test = gluon.data.vision.FashionMNIST(train=False,transform=transform)
batch_size = 256
train_data = gluon.data.DataLoader(mnist_train,batch_size,shuffle=True)
test_data = gluon.data.DataLoader(mnist_test,batch_size,shuffle=False)
num_inputs = 28*28
num_outputs = 10
num_hidden1 = 256
num_hidden2 = 256
weight_scale = 0.01
W1 = nd.random_normal(shape=(num_inputs, num_hidden1), scale=weight_scale)
b1 = nd.zeros(num_hidden1)
W2 = nd.random_normal(shape=(num_hidden1, num_hidden2), scale=weight_scale)
b2 = nd.zeros(num_hidden2)
W3 = nd.random_normal(shape=(num_hidden2, num_outputs), scale=weight_scale)
b3 = nd.zeros(num_outputs)
params = [W1, b1, W2, b2, W3, b3]
for param in params:
param.attach_grad()
# 定义包含dropout层的模型
drop_prob1 = 0.2
drop_prob2 = 0.5
def net(X):
X = X.reshape((-1,num_inputs))
# 第一层全连接
h1 = nd.relu(nd.dot(X,W1) + b1)
# 添加Dropout层
h1 = dropout(h1,drop_prob1)
# 第二层全连接
h2 = nd.relu(nd.dot(h1,W2) + b2)
# 添加Dropout层
h2 = dropout(h2,drop_prob2)
return nd.dot(h2,W3) + b3
# 定义损失函数
softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
# 定义学习速率
learning_rate = 0.5
# 定义训练迭代次数
epochs = 5
for epoch in range(epochs):
train_loss = 0.0
train_acc = 0.0
for data,label in train_data:
with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output,label)
loss.backward()
SGD(params,learning_rate / batch_size)
# 计算训练精度
train_loss += nd.mean(loss).asscalar()
train_acc += accuracy(output,label)
test_acc = evaluate_accuracy(test_data,net)
print('Epoch: %d, Loss %f, Train_Acc:%f, Test_Acc:%f .' %(epoch,train_loss/len(train_data),
train_acc / len(train_data),test_acc))
# 预测
data, label = mnist_test[0:9]
# show_images(data)
print('true labels')
print(get_text_labels(label))
predicted_labels = net(data).argmax(axis=1)
print('predicted labels')
print(get_text_labels(predicted_labels.asnumpy()))
转载于:https://my.oschina.net/wujux/blog/1809877
上一篇: tidb扩容tikv节点
下一篇: tf.nn.dropout
推荐阅读
-
MXNet动手学深度学习笔记:Gluon实现Dropout
-
MXNet动手学深度学习笔记:Dropout
-
深度学习框架Pytorch——学习笔记(六)PyTorch实现L1,L2正则化以及Dropout
-
(pytorch-深度学习系列)pytorch避免过拟合-dropout丢弃法的实现-学习笔记
-
《动手学深度学习》task1——线性回归、softmax与分类模型,多层感知机笔记
-
《动手学深度学习》之线性回归的从零实现(含个人理解)
-
动手学深度学习(二)——正则化(gluon)
-
动手学深度学习(一)——线性回归(gluon)
-
《Gluon 动手学深度学习 一》安装和运行
-
《Gluon 动手学深度学习 五》线性回归Gluon实现