欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Spark入门(四)Idea远程提交项目到spark集群

程序员文章站 2022-03-06 08:02:02
...

一、依赖包配置

scala与spark的相关依赖包,spark包后尾下划线的版本数字要跟scala的版本第一二位要一致,即2.11

pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <groupId>com.mk</groupId>
  <artifactId>spark-test</artifactId>
  <version>1.0</version>

  <name>spark-test</name>
  <url>http://spark.mk.com</url>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
    <scala.version>2.11.1</scala.version>
    <spark.version>2.4.4</spark.version>
    <hadoop.version>2.6.0</hadoop.version>
  </properties>

  <dependencies>
    <!-- scala依赖-->
    <dependency>
      <groupId>org.scala-lang</groupId>
      <artifactId>scala-library</artifactId>
      <version>${scala.version}</version>
    </dependency>

    <!-- spark依赖-->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.11</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql_2.11</artifactId>
      <version>${spark.version}</version>
    </dependency>


    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.11</version>
      <scope>test</scope>
    </dependency>
  </dependencies>

  <build>
    <pluginManagement>
      <plugins>

        <plugin>
          <artifactId>maven-clean-plugin</artifactId>
          <version>3.1.0</version>
        </plugin>

        <plugin>
          <artifactId>maven-resources-plugin</artifactId>
          <version>3.0.2</version>
        </plugin>
        <plugin>
          <artifactId>maven-compiler-plugin</artifactId>
          <version>3.8.0</version>
        </plugin>
        <plugin>
          <artifactId>maven-surefire-plugin</artifactId>
          <version>2.22.1</version>
        </plugin>
        <plugin>
          <artifactId>maven-jar-plugin</artifactId>
          <version>3.0.2</version>
        </plugin>
      </plugins>
    </pluginManagement>
  </build>
</project>

 

二、PI例子

java重新编写scala的PI例子

package com.mk;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SparkSession;

import java.util.ArrayList;
import java.util.List;



public class App 
{
    public static void main( String[] args )
    {


        SparkConf sparkConf = new SparkConf();
        if(System.getProperty("os.name").toLowerCase().contains("win")) {
//            sparkConf.setMaster("local[2]");
//            System.out.println("使用本地模拟是spark");
//        }else
//            {
            sparkConf.setMaster("spark://hadoop01:7077,hadoop02:7077,hadoop03:7077");
            sparkConf.set("spark.driver.host","192.168.10.126");//本地ip,必须与spark集群能够相互访问,如:同一个局域网
            sparkConf.setJars(new String[] {".\\out\\artifacts\\spark_test\\spark-test.jar"});//项目构建生成的路径
        }
        SparkSession session = SparkSession.builder().appName("Pi").config(sparkConf).config(sparkConf).getOrCreate();
        int slices =2;
        int n = (int)Math.min(100_000L * slices, Integer.MAX_VALUE);
        JavaSparkContext sparkContext = new JavaSparkContext(session.sparkContext());

        List<Integer> list = new ArrayList<>(n);
        for (int i = 0; i < n; i++)
            list.add(i + 1);
        int count  = sparkContext.parallelize(list, slices).
                map(v -> {
                    double x = Math.random() * 2 - 1;
                    double y = Math.random() * 2 - 1;
                    if (x * x + y * y < 1)
                        return 1;
                    return 0;
                }).reduce((Integer a, Integer b) ->a+b);
         System.out.println("PI:"+  4.0 * count / n);
        session.stop();

    }
}

 

三、直接在idea本地运行

输出PI

Spark入门(四)Idea远程提交项目到spark集群

 

 

四、局限性

注意:项目机器的本地ip,必须与spark集群能够相互访问,如:同一个局域网。

不在同一个网络提交失败,任务一直重试无法退出

相关标签: Hadoop