欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  web前端

详解堆的javascript实现方法

程序员文章站 2022-04-24 11:41:57
...
堆的定义

最大(最小)堆是一棵每一个节点的键值都不小于(大于)其孩子(如果存在)的键值的树。大顶堆是一棵完全二叉树,同时也是一棵最大树。小顶堆是一棵完全完全二叉树,同时也是一棵最小树。

另外,记住这两个概念,对写代码太重要了:

1、父节点和子节点的关系:看定义

2、完全二叉树:参考[2]

基本操作

1、Build(构建堆)

2、Insert(插入)

3、Delete(删除:最小或者最大的那个)

代码实现

首先,写代码前有两个非常重要的点:

1、用一个数组就可以作为堆的存储结构,非常简单而且易操作;

2、另外同样因为是数组作为存储结构,所以父子节点之间的关系就能根据索引就轻松找到对方了。

对于JavaScript以0作为数组索引开始,关系如下:

nLeftIndex = 2 * (nFatherIndex+1) - 1;
nRightIndex = 2* (nFatherIndex+1);

前面提到注意两个概念,是有助于理解的:

1、因为是数组,所以父子节点的关系就不需要特殊的结构去维护了,索引之间通过计算就可以得到,省掉了很多麻烦。如果是链表结构,就会复杂很多;

2、完全二叉树的概念可以参考[2],要求叶子节点从左往右填满,才能开始填充下一层,这就保证了不需要对数组整体进行大片的移动。这也是随机存储结构(数组)的短板:删除一个元素之后,整体往前移是比较费时的。这个特性也导致堆在删除元素的时候,要把最后一个叶子节点补充到树根节点的缘由

代码实现:

/******************************************************
* file : 堆
* author : "page"
* time : "2016/11/02"
*******************************************************/
function Heap()
{
 this.data = [];
}
 
Heap.prototype.print = function () {
 console.log("Heap: " + this.data);
}
 
Heap.prototype.build = function(data){
 // 初始化
 this.data = [];
 if (!data instanceof Array)
 return false;
 
 // 入堆
 for (var i = 0; i < data.length; ++i) {
 this.insert(data[i]);
 }
 
 return true;
}
 
Heap.prototype.insert = function( nValue ){
 if (!this.data instanceof Array) {
 this.data = [];
 }
 
 this.data.push(nValue);
 // 更新新节点
 var nIndex = this.data.length-1;
 var nFatherIndex = Math.floor((nIndex-1)/2);
 while (nFatherIndex > 0){
 if (this.data[nIndex] < this.data[nFatherIndex]) {
 var temp = this.data[nIndex];
 this.data[nIndex] = this.data[nFatherIndex];
 this.data[nFatherIndex] = temp;
 }
 
 nIndex = nFatherIndex;
 nFatherIndex = Math.floor((nIndex-1)/2);
 }
}
 
Heap.prototype.delete = function( ){
 if (!this.data instanceof Array) {
 return null;
 }
 
 var nIndex = 0;
 var nValue = this.data[nIndex];
 var nMaxIndex = this.data.length-1;
 // 更新新节点
 var nLeaf = this.data.pop();
 this.data[nIndex] = nLeaf;
 
 while (nIndex < nMaxIndex ){
 var nLeftIndex = 2 * (nIndex+1) - 1;
 var nRightIndex = 2 * (nIndex+1);
 
 // 找最小的一个子节点(nLeftIndex < nRightIndex)
 var nSelectIndex = nLeftIndex;
 if (nRightIndex < nMaxIndex) {
 nSelectIndex = (this.data[nLeftIndex] > this.data[nRightIndex]) ? nRightIndex : nLeftIndex;
 }
 
 if (nSelectIndex < nMaxIndex && this.data[nIndex] > this.data[nSelectIndex] ){
 var temp = this.data[nIndex];
 this.data[nIndex] = this.data[nSelectIndex];
 this.data[nSelectIndex] = temp;
 }
 
 nIndex = nSelectIndex;
 }
 
 return nValue;
}
// test
var heap = new Heap();
heap.build([1, 3, 5, 11, 4, 6, 7, 12, 15, 10, 9, 8]);
heap.print();
// insert
heap.insert(2);
heap.print();
// delete
heap.delete();
heap.print();

关于JavaScript的几点小结

这里是采用面向对象的一种实现方法,感觉上不是太优雅,不知道还有没有更好的表示方法和写法;

学习了数组的几个用法:push和pop的操作太好用了;

判断数组的方式也是临时从网上搜的(instanceof),印象不深刻,不用的话下次估计还是有可能忘掉。

参考

[1]《数据结构和算法分析:C语言描述》

[2]图解数据结构(8)——二叉堆

[3]>数据结构:堆

总结

JavaScript的数组实现了push和pop这些操作,许多其他语言也提供了类似的数据结构和操作(比如C++的Vector),同时也支持随机操作。所以,我开始想如果这些结构上简单的加上自动排序的概念,那么一个堆就轻松搞定了,后面看到C++ STL的make_heap就知道自己知道的太少了,但也庆幸自己思维方式是对的。JavaScript的没有去查,我想有或者实现起来很容易;
自己去实现了之后,发现这个结构也很简单,只要你肯去跟它亲密接触一次就可以了;

JavaScript的细节部分还是不太了解,比如数组的应用上还要再翻资料才能用;对于JavaScript的灵魂还是没有接触到,精髓部分需要不断的学习和练习;

这些代码,只要你去了解了概念,了解了编程的基础,就可以写的出来。但是,代码还可以写的更简洁,比如delete函数求最小的子节点的时候,左右节点的索引就不需要比较,肯定是左边的小。代码部分感觉还是可以继续优化和精简的。

相关标签: javascript