欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Ubuntu16.04 anaconda2 安装caffe(CPU版)辛酸史

程序员文章站 2022-04-23 11:20:45
...

一. 前言

以前不用caffe,不知其“傲娇”,近期因需要不得不安装,着实被“坑”了一把。。。(当然主要原因还在于我目前水平太菜。。。)为了下次在新环境下少走些弯路,少查点针对性不强的资料,现在抓紧把对我有帮助的文章整理如下,表示十分感谢这些文章的作者!若能对阅读此文的您解决相应问题有所帮助,着实荣幸之至。

二. 借鉴文章如下,表示感谢!

1. Ubuntu 16.04下Anaconda编译安装Caffe
2. Ubuntu16.04下安装Caffe
3. ubuntu16.04下编译caffe出现.build_release/lib/libcaffe.so: undefined reference to google ::protobuf…的问题
4. Ubuntu16.04重装protobuf2.6.1版本
5. from google.protobuf.internal import enum_type_wrapper ImportError: No module named google.protobuf

三. 我的安装经历 (主要借鉴文章1)

1. 已有环境

(1)Anoconda 2
(2)cuda (9.0)
(3)cudnn (7.0.5)
(4)安装好TensorFlow、Pytorch,每个都单独有一个虚拟的Anoconda环境
(5)目标新环境(python=2.7)已安装opencv3.4.3 安装步骤

2. 安装依赖库

进入官网http://caffe.berkeleyvision.org/installation.html,可以看到编译caffe需要的依赖库:
Ubuntu16.04 anaconda2 安装caffe(CPU版)辛酸史
首先进入自己的caffe虚拟环境source activate xxxxx,
由于CUDA已经安装好了,直接跳过,安装各种依赖库:

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install libatlas-dev
sudo apt-get install liblapack-dev
sudo apt-get install libatlas-base-dev

3. 配置caffe的Makefile.config文件

# 具体配置
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#	You should not set this flag if you will be reading LMDBs with any
#	possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
		-gencode arch=compute_20,code=sm_21 \
		-gencode arch=compute_30,code=sm_30 \
		-gencode arch=compute_35,code=sm_35 \
		-gencode arch=compute_50,code=sm_50 \
		-gencode arch=compute_52,code=sm_52 \
		-gencode arch=compute_60,code=sm_60 \
		-gencode arch=compute_61,code=sm_61 \
		-gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# PYTHON_INCLUDE := /usr/include/python2.7 \
		# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda2/envs/xxxxx
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
		 $(ANACONDA_HOME)/include/python2.7 \
		 $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib
LINKFLAGS := -Wl,-rpath,$(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

4. 编译(在下载好的caffe路径下进行)

[sudo] make all -j6
[sudo] make test -j6
make runtest -j6
sudo make pycaffe
python
import caffe

5. 出现过的问题

(1)常见问题可见文章1,2
(2)如果出现文章3提到的问题“.build_release/lib/libcaffe.so: undefined reference to google ::protobuf…”,采用文章3的方法可是需要很慎重的!!!我就是采用了,然后感觉闯祸了…删的东西太多,不好~其实应该有解决的余地的。无奈之下,继续搜资料,文章4帮助了我,感谢感谢!
(3)import caffe时,可能会出现文章5提到的问题“from google.protobuf.internal import enum_type_wrapper ImportError: No module named google.protobuf”,对于Python=2.7来讲:pip install protobuf(亲测有效);对Python=3.5,可能就得sudo pip install protobuf了(没试过,因为我的是python2.7)。
(4)如遇到其他小问题,首先要做的是,不慌~肯定可以解决的,锻炼自己能力和魄力的方法就是先看终端的出错信息,自己猜一下怎么办,尝试一下。不行的话,再以理性的角度去搜资料,毕竟问题一样,问题背景不一定一样,别人的解决办法不一定真的适合自己的情况~

大家,加油!加油!加油!

相关标签: 软件安装