欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

用matplotlib画等高线图详解

程序员文章站 2022-04-21 16:13:39
等高线图是在地理课中讲述山峰山谷时绘制的图形,在机器学习中也会被用在绘制梯度下降算法的图形中。 因为等高线的图有三个信息:x,y以及x,y所对应的高度值。 这个高度值的...

等高线图是在地理课中讲述山峰山谷时绘制的图形,在机器学习中也会被用在绘制梯度下降算法的图形中。

因为等高线的图有三个信息:x,y以及x,y所对应的高度值。

这个高度值的计算我们用一个函数来表述:

 计算x,y坐标对应的高度值
def f(x, y):
 return (1-x/2+x**5+y**3) * np.exp(-x**2-y**2)

这个函数看起来挺复杂的,但我们这里只是为了能够获得一个高度值,因此其中函数代表什么意义不用关心,只要知道输入一个x,y,输出一个高度值就可以了。

要画出等高线,核心函数是plt.contourf(),但在这个函数中输入的参数是x,y对应的网格数据以及此网格对应的高度值,因此还需要调用np.meshgrid(x,y)把x,y值转换成网格数据才行,这样完整的代码如下:

画等高线的代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 计算x,y坐标对应的高度值
def f(x, y):
 return (1-x/2+x**5+y**3) * np.exp(-x**2-y**2)

# 生成x,y的数据
n = 256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)

# 把x,y数据生成mesh网格状的数据,因为等高线的显示是在网格的基础上添加上高度值
X, Y = np.meshgrid(x, y)

# 填充等高线
plt.contourf(X, Y, f(X, Y))
# 显示图表
plt.show()

上述代码显示的图形为:

用matplotlib画等高线图详解

这颜色有点太冷了,我们想显示热力图,那只要在plt.contourf()函数中添加属性cmap=plt.cm.hot就能显示热力图,其中cmap代表为color map,我们把color map映射成hot(热力图),此处关键代码为:

# 填充等高线
plt.contourf(X, Y, f(X, Y), cmap=plt.cm.hot)

显示的图为:

用matplotlib画等高线图详解

是否显示得挺热的。:)

上面是用plt.contourf()填充了等高线,但还有一种方式是可以直接显示等高线,而不是填充的方式,例如:

C = plt.contour(X, Y, f(X, Y), 20)

这里20代表的是显示等高线的密集程度,数值越大,画的等高线数就越多。

这样显示的图形为:

用matplotlib画等高线图详解

当然,如果我们不调用前面的plt.contourf()函数,则就会直接显示等高线。

最后我们想在等高线中添加上标注值:

plt.clabel(C, inline=True, fontsize=12)

显示的图为:

用matplotlib画等高线图详解

完整的代码为:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 计算x,y坐标对应的高度值
def f(x, y):
 return (1-x/2+x**5+y**3) * np.exp(-x**2-y**2)

# 生成x,y的数据
n = 256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)

# 把x,y数据生成mesh网格状的数据,因为等高线的显示是在网格的基础上添加上高度值
X, Y = np.meshgrid(x, y)

# 填充等高线
plt.contourf(X, Y, f(X, Y), 20, cmap=plt.cm.hot)
# 添加等高线
C = plt.contour(X, Y, f(X, Y), 20)
plt.clabel(C, inline=True, fontsize=12)
# 显示图表
plt.show()

总结

以上就是本文关于用matplotlib画等高线图详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Python通过matplotlib绘制动画简单实例

Python的地形三维可视化Matplotlib和gdal使用实例

python学习之matplotlib绘制散点图实例

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!