欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Python之Matplotlib数据可视化(七):用Matplotlib画三维图

程序员文章站 2022-07-13 09:20:53
...

首先看经典三维立体图:莫比乌斯环
Python之Matplotlib数据可视化(七):用Matplotlib画三维图

Matplotlib 原本只能画二维图。大概在 1.0 版本的时候,Matplotlib 实现了一些建立在二维图基础上的三维图功能,于是一组画三维图可视化的便捷(尚不完美)工具便诞生了。我们可以导入 Matplotlib 自带的 mplot3d 工具箱来画三维图

from mpl_toolkits import mplot3d

导入这个子模块之后,就可以在创建任意一个普通坐标轴的过程中加入 projection='3d'关键字,从而创建一个三维坐标轴:

import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = plt.axes(projection='3d')

Python之Matplotlib数据可视化(七):用Matplotlib画三维图
有了三维坐标轴之后,我们就可以在上面画出各种各样的三维图了。

1 三维数据点与线

最基本的三维图是由 (x , y , z ) 三维坐标点构成的线图与散点图。可以用 ax.plot3Dax.scatter3D 函数来创建它们。由于三维图函数的参数与二维图函数的参数基本相同。下面来画一个三角螺旋线(trigonometric spiral),在线上随机分布一些散点

ax = plt.axes(projection='3d')
# 三维线的数据
zline = np.linspace(0, 15, 1000)
xline = np.sin(zline)
yline = np.cos(zline)
ax.plot3D(xline, yline, zline, 'gray')
# 三维散点的数据
zdata = 15 * np.random.random(100)
xdata = np.sin(zdata) + 0.1 * np.random.randn(100)
ydata = np.cos(zdata) + 0.1 * np.random.randn(100)
ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens');
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax = plt.axes(projection='3d')
# 三维线的数据
zline = np.linspace(0, 15, 1000)
xline = np.sin(zline)
yline = np.cos(zline)
ax.plot3D(xline, yline, zline, 'gray')
# 三维散点的数据
zdata = 15 * np.random.random(100)
xdata = np.sin(zdata) + 0.1 * np.random.randn(100)
ydata = np.cos(zdata) + 0.1 * np.random.randn(100)
ax.scatter3D(xdata, ydata, zdata, c=zdata, cmap='Greens');

plt.show()

Python之Matplotlib数据可视化(七):用Matplotlib画三维图
默认情况下,散点会自动改变透明度,以在平面上呈现出立体感。有时在静态图形上观察三维效果很费劲,通过交互视图(interactive view)就可以让所有数据点呈现出极佳的视觉效果。

2 三维等高线图

与二维等高线相比, mplot3d 有用同样的输入数据创建三维晕渲(relief)图的工具。与二维 ax.contour 图形一样, ax.contour3D 要求所有数据都是二维网格数据的形式,并且由函数计算 z 轴数值。

2.1 三维等高线图

下面演示一个用三维正弦函数画的三维等高线图

def f(x, y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))
x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z');
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt

def f(x, y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))
x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z');

plt.show()

Python之Matplotlib数据可视化(七):用Matplotlib画三维图

2.2 调整三维图的观察视角

默认的初始观察角度有时不是最优的, view_init 可以调整观察角度与方位角(azimuthal angle)。我们把俯仰角调整为 60 度(这里的 60 度是 x-y 平面的旋转角度),方位角调整为 35 度(就是绕 z 轴顺时针旋转 35 度):

ax.view_init(60, 35)
fig
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt

def f(x, y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))
x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z');
ax.view_init(60, 35)
fig

plt.show()

Python之Matplotlib数据可视化(七):用Matplotlib画三维图
其实,也可以在 Matplotlib 的交互式后端界面直接通过点击、拖拽图形,实现同样的交互旋转效果。

3 线框图和曲面图

还有两种画网格数据的三维图没有介绍,就是线框图和曲面图。它们都是将网格数据映射成三维曲面,得到的三维形状非常容易可视化。

3.1 线框图

下面是一个线框图示例

fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot_wireframe(X, Y, Z, color='black')
ax.set_title('wireframe');

Python之Matplotlib数据可视化(七):用Matplotlib画三维图

3.2 三维曲面图

曲面图与线框图类似,只不过线框图的每个面都是由多边形构成的。只要增加一个配色方案来填充这些多边形,就可以让读者感受到可视化图形表面的拓扑结构了

ax = plt.axes(projection='3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,cmap='viridis', edgecolor='none')
ax.set_title('surface');
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt

def f(x, y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))
x = np.linspace(-6, 6, 30)
y = np.linspace(-6, 6, 30)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
fig = plt.figure()
ax = plt.axes(projection='3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
				cmap='viridis', edgecolor='none')
ax.set_title('surface');

plt.show()

Python之Matplotlib数据可视化(七):用Matplotlib画三维图

3.3 极坐标曲面图

需要注意的是,画曲面图需要二维数据,但可以不是直角坐标系(也可以用极坐标)。下面的示例创建了一个局部的极坐标网格(polar grid),当我们把它画成 surface3D 图形时,可以获得一种使用了切片的可视化效果

r = np.linspace(0, 6, 20)
theta = np.linspace(-0.9 * np.pi, 0.8 * np.pi, 40)
r, theta = np.meshgrid(r, theta)
X = r * np.sin(theta)
Y = r * np.cos(theta)
Z = f(X, Y)
ax = plt.axes(projection='3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
cmap='viridis', edgecolor='none');
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt

def f(x, y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))
r = np.linspace(0, 6, 20)
theta = np.linspace(-0.9 * np.pi, 0.8 * np.pi, 40)
r, theta = np.meshgrid(r, theta)
X = r * np.sin(theta)
Y = r * np.cos(theta)
Z = f(X, Y)
ax = plt.axes(projection='3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
cmap='viridis', edgecolor='none');

plt.show()

Python之Matplotlib数据可视化(七):用Matplotlib画三维图

4 曲面三角剖分

在某些应用场景中,上述这些要求均匀采样的网格数据显得太过严格且不太容易实现。这时就可以使用三角剖分图形(triangulation-based plot)了。如果没有笛卡尔或极坐标网格的均匀绘制图形,我们该如何用一组随机数据画图呢?

4.1 三维采样的曲面图

theta = 2 * np.pi * np.random.random(1000)
r = 6 * np.random.random(1000)
x = np.ravel(r * np.sin(theta))
y = np.ravel(r * np.cos(theta))
z = f(x, y)

可以先为数据点创建一个散点图,对将要采样的图形有一个基本认识

ax = plt.axes(projection='3d')
ax.scatter(x, y, z, c=z, cmap='viridis', linewidth=0.5);
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt

def f(x, y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))
theta = 2 * np.pi * np.random.random(1000)
r = 6 * np.random.random(1000)
x = np.ravel(r * np.sin(theta))
y = np.ravel(r * np.cos(theta))
z = f(x, y)
ax = plt.axes(projection='3d')
ax.scatter(x, y, z, c=z, cmap='viridis', linewidth=0.5);
plt.show()

Python之Matplotlib数据可视化(七):用Matplotlib画三维图

4.2 三角剖分曲面图

还有许多地方需要修补,这些工作可以由 ax.plot_trisurf 函数帮助我们完成。它首先找到一组所有点都连接起来的三角形,然后用这些三角形创建曲面(结果如图 所示,其中 x 、 y 和 z 参数都是一维数组):

ax = plt.axes(projection='3d')
ax.plot_trisurf(x, y, z,
cmap='viridis', edgecolor='none');
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt

def f(x, y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))
theta = 2 * np.pi * np.random.random(1000)
r = 6 * np.random.random(1000)
x = np.ravel(r * np.sin(theta))
y = np.ravel(r * np.cos(theta))
z = f(x, y)
ax = plt.axes(projection='3d')
ax.plot_trisurf(x, y, z,
cmap='viridis', edgecolor='none');
plt.show()

Python之Matplotlib数据可视化(七):用Matplotlib画三维图

虽然结果肯定没有之前用均匀网格画的图完美,但是这种三角剖分方法很灵活,可以创建各种有趣的三维图。例如,可以用它画一条三维的莫比乌斯带,下面就来进行演示。

4.3 案例:莫比乌斯带

莫比乌斯带是把一根纸条扭转 180 度后,再把两头粘起来做成的纸带圈。从拓扑学的角度看,莫比乌斯带非常神奇,因为它总共只有一个面!下面我们就用 Matplotlib 的三维工具来画一条莫比乌斯带。此时的关键是想出它的绘图参数:由于它是一条二维带,因此需要两个内在维度(intrinsic dimensions)。让我们把一个维度定义为 θ,取值范围为 0~2 π ;另一个维度是 w,取值范围是 -1~1,表示莫比乌斯带的宽度

theta = np.linspace(0, 2 * np.pi, 30)
w = np.linspace(-0.25, 0.25, 8)
w, theta = np.meshgrid(w, theta)

有了参数之后,我们必须确定带上每个点的直角坐标 ( x, y, z )
仔细思考一下,我们可能会找到两种旋转关系:一种是圆圈绕着圆心旋转(角度用 θ 定义),另一种是莫比乌斯带在自己的坐标轴上旋转(角度用 Φ 定义)。因此,对于一条莫比乌斯带,我们必然会有环的一半扭转 180 度,即 Δ Φ = Δ θ / 2

phi = 0.5 * theta

现在用我们的三角学知识将极坐标转换成三维直角坐标。定义每个点到中心的距离(半径)r,那么直角坐标 ( x, y, z ) 就是:

# x  - y平面内的半径
r = 1 + w * np.cos(phi)
x = np.ravel(r * np.cos(theta))
y = np.ravel(r * np.sin(theta))
z = np.ravel(w * np.sin(phi))

最后,要画出莫比乌斯带,还必须确保三角剖分是正确的。最好的实现方法就是首先用基本参数化方法定义三角剖分,然后用 Matplotlib 将这个三角剖分映射到莫比乌斯带的三维空间里,这样就可以画出图形

# 用基本参数化方法定义三角剖分
from matplotlib.tri import Triangulation
tri = Triangulation(np.ravel(w), np.ravel(theta))
ax = plt.axes(projection='3d')
ax.plot_trisurf(x, y, z, triangles=tri.triangles,
cmap='viridis', linewidths=0.2);
ax.set_xlim(-1, 1); ax.set_ylim(-1, 1); ax.set_zlim(-1, 1);
from mpl_toolkits import mplot3d
import numpy as np
import matplotlib.pyplot as plt

theta = np.linspace(0, 2 * np.pi, 30)
w = np.linspace(-0.25, 0.25, 8)
w, theta = np.meshgrid(w, theta)
phi = 0.5 * theta
# x  - y平面内的半径
r = 1 + w * np.cos(phi)
x = np.ravel(r * np.cos(theta))
y = np.ravel(r * np.sin(theta))
z = np.ravel(w * np.sin(phi))
# 用基本参数化方法定义三角剖分
from matplotlib.tri import Triangulation
tri = Triangulation(np.ravel(w), np.ravel(theta))
ax = plt.axes(projection='3d')
ax.plot_trisurf(x, y, z, triangles=tri.triangles,cmap='viridis', linewidths=0.2);
ax.set_xlim(-1, 1); ax.set_ylim(-1, 1); ax.set_zlim(-1, 1);
plt.show()

Python之Matplotlib数据可视化(七):用Matplotlib画三维图

备注

各位老铁来个“关注”、“点赞”、“评论”三连击哦
各位老铁来个“关注”、“点赞”、“评论”三连击哦
各位老铁来个“关注”、“点赞”、“评论”三连击哦

Python之Matplotlib数据可视化(七):用Matplotlib画三维图