欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

OpenCV中的卡尔曼滤波方法

程序员文章站 2022-03-05 16:23:48
...

一.OpenCV中的类定义

KalmanFilter类的定义

class CV_EXPORTS_W KalmanFilter  
{  
public:      
    CV_WRAP KalmanFilter();                                                                           //构造默认KalmanFilter对象  
    CV_WRAP KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);  //完整构造KalmanFilter对象方法  
    void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);              //初始化KalmanFilter对象,会替换原来的KF对象  
    
    CV_WRAP const Mat& predict(const Mat& control=Mat());           //计算预测的状态值      
    CV_WRAP const Mat& correct(const Mat& measurement);             //根据测量值更新状态值  
  
    Mat statePre;            //预测值 (x'(k)): x(k)=A*x(k-1)+B*u(k)  
    Mat statePost;           //状态值 (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))  
    Mat transitionMatrix;    //状态转移矩阵 (A)  
    Mat controlMatrix;       //控制矩阵 B   
    Mat measurementMatrix;   //测量矩阵 H  
    Mat processNoiseCov;     //系统误差 Q  
    Mat measurementNoiseCov; //测量误差 R  
    Mat errorCovPre;         //最小均方误差 (P'(k)): P'(k)=A*P(k-1)*At + Q)  
    Mat gain;                //卡尔曼增益   (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)  
    Mat errorCovPost;        //修正的最小均方误差 (P(k)): P(k)=(I-K(k)*H)*P'(k)  
  
    // 临时矩阵  
    Mat temp1;  
    Mat temp2;  
    Mat temp3;  
    Mat temp4;  
    Mat temp5;  
};  

相关函数的实现方法,即opencv/modules/video/src/kalman.cpp

#include "precomp.hpp"

namespace cv
{

KalmanFilter::KalmanFilter() {}
KalmanFilter::KalmanFilter(int dynamParams, int measureParams, int controlParams, int type)
{
    init(dynamParams, measureParams, controlParams, type);
}

void KalmanFilter::init(int DP, int MP, int CP, int type)
{
    CV_Assert( DP > 0 && MP > 0 );
    CV_Assert( type == CV_32F || type == CV_64F );
    CP = std::max(CP, 0);

    statePre = Mat::zeros(DP, 1, type);         //预测值  x(k)=A*x(k-1)+B*u(k)  
    statePost = Mat::zeros(DP, 1, type);        //修正的状态值  x(k)=x'(k)+K(k)*(z(k)-H*x'(k))  
    transitionMatrix = Mat::eye(DP, DP, type);  //状态转移矩阵

    processNoiseCov = Mat::eye(DP, DP, type);     //系统误差Q
    measurementMatrix = Mat::zeros(MP, DP, type); //测量矩阵
    measurementNoiseCov = Mat::eye(MP, MP, type); //测量误差

    errorCovPre = Mat::zeros(DP, DP, type);    //最小均方误差  (P'(k)): P'(k)=A*P(k-1)*At + Q) 
    errorCovPost = Mat::zeros(DP, DP, type);   //修正的最小均方误差 (P(k)): P(k)=(I-K(k)*H)*P'(k)  
    gain = Mat::zeros(DP, MP, type);             //卡尔曼增益 

    if( CP > 0 )
        controlMatrix = Mat::zeros(DP, CP, type);  //控制矩阵
    else
        controlMatrix.release();

    temp1.create(DP, DP, type);
    temp2.create(MP, DP, type);
    temp3.create(MP, MP, type);
    temp4.create(MP, DP, type);
    temp5.create(MP, 1, type);
}

const Mat& KalmanFilter::predict(const Mat& control)
{
    CV_INSTRUMENT_REGION();

    // update the state: x'(k) = A*x(k)
    statePre = transitionMatrix*statePost;

    if( !control.empty() )
        // x'(k) = x'(k) + B*u(k)
        statePre += controlMatrix*control;

    // update error covariance matrices: temp1 = A*P(k)
    temp1 = transitionMatrix*errorCovPost;

    // P'(k) = temp1*At + Q
    gemm(temp1, transitionMatrix, 1, processNoiseCov, 1, errorCovPre, GEMM_2_T);//GEMM_2_T表示对第2个参数转置。

    // handle the case when there will be measurement before the next predict.
    statePre.copyTo(statePost);
    errorCovPre.copyTo(errorCovPost);
    return statePre;
}

const Mat& KalmanFilter::correct(const Mat& measurement)
{
    CV_INSTRUMENT_REGION();

    // temp2 = H*P'(k)
    temp2 = measurementMatrix * errorCovPre;

    // temp3 = temp2*Ht + R
    gemm(temp2, measurementMatrix, 1, measurementNoiseCov, 1, temp3, GEMM_2_T);//计算测量协方差

    // temp4 = inv(temp3)*temp2 = Kt(k)
    solve(temp3, temp2, temp4, DECOMP_SVD);//solve函数,用来解线性方程 temp3*temp4=temp2

    // K(k)
    gain = temp4.t();

    // temp5 = z(k) - H*x'(k)
    temp5 = measurement - measurementMatrix*statePre; //测量误差

    // x(k) = x'(k) + K(k)*temp5
    statePost = statePre + gain*temp5;

    // P(k) = P'(k) - K(k)*temp2
    errorCovPost = errorCovPre - gain*temp2;

    return statePost;
}

}

二.需要说明的地方

卡尔曼滤波的相关公式就不贴出来了,上面的更新与预测函数可以对照着那些公式,下面对几个关键的地方进行说明。

(1)gemm()函数

gemm( )是矩阵的广义乘法

void gemm(const GpuMat& src1, constGpuMat& src2, double alpha, const GpuMat& src3, double beta,GpuMat& dst, int flags=0, Stream& stream=Stream::Null())

对应着:

   dst = alpha*src1*src2 +beta* src3

需要注意的一点是,程序里面给出了最后一个参数是GEMM_2_T表示对第2个参数转置

(2)solve()函数

bool solve(InputArray src1, InputArray src2, OutputArray dst, int flags=DECOMP_LU)

用来解线性方程 A*X=B,src1 线性系统的左侧(相当于上面的A),src2 线性系统的右侧(相当于上面的B),dst 输出的解决方案(相当于要求解的X),flag为使用的方法。

(3)为什么可以用solve()函数求解卡尔曼增益

卡尔曼增益K的意义是使后验估计误差协方差最小,将K带入后验估计误差协方差的表达式,
OpenCV中的卡尔曼滤波方法
通过求导,可以计算出最优的K值。一般的表达式:
OpenCV中的卡尔曼滤波方法
采用SOLVE()函数的依据就是上面的红线部分,相当于直接进行线性方程的求解。

具体推导可以参考:
https://wenku.baidu.com/view/a5a6068619e8b8f67c1cb98b.html

(4)一个典型的例子-- 跟踪鼠标位置

    #include "opencv2/video/tracking.hpp"  
    #include "opencv2/highgui/highgui.hpp"  
    #include <stdio.h>  
    using namespace cv;  
    using namespace std;  
      
    const int winHeight=600;  
    const int winWidth=800;  
      
      
    Point mousePosition= Point(winWidth>>1,winHeight>>1);  
      
    //mouse event callback  
    void mouseEvent(int event, int x, int y, int flags, void *param )  
    {  
        if (event==CV_EVENT_MOUSEMOVE) {  
            mousePosition = Point(x,y);  
        }  
    }  
      
    int main (void)  
    {  
        RNG rng;  
        //1.kalman filter setup  
        const int stateNum=4;                                      //状态值4×1向量(x,y,△x,△y)  
        const int measureNum=2;                                    //测量值2×1向量(x,y)    
        KalmanFilter KF(stateNum, measureNum, 0);     
      
        KF.transitionMatrix = *(Mat_<float>(4, 4) <<1,0,1,0,0,1,0,1,0,0,1,0,0,0,0,1);  //转移矩阵A  
        setIdentity(KF.measurementMatrix);                                             //测量矩阵H  
        setIdentity(KF.processNoiseCov, Scalar::all(1e-5));                            //系统噪声方差矩阵Q  
        setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));                        //测量噪声方差矩阵R  
        setIdentity(KF.errorCovPost, Scalar::all(1));                                  //后验错误估计协方差矩阵P  
        rng.fill(KF.statePost,RNG::UNIFORM,0,winHeight>winWidth?winWidth:winHeight);   //初始状态值x(0)  
        Mat measurement = Mat::zeros(measureNum, 1, CV_32F);                           //初始测量值x'(0),因为后面要更新这个值,所以必须先定义  
          
        namedWindow("kalman");  
        setMouseCallback("kalman",mouseEvent);  
              
        Mat image(winHeight,winWidth,CV_8UC3,Scalar(0));  
      
        while (1)  
        {  
            //2.kalman prediction  
            Mat prediction = KF.predict();  
            Point predict_pt = Point(prediction.at<float>(0),prediction.at<float>(1) );   //预测值(x',y')  
      
            //3.update measurement  
            measurement.at<float>(0) = (float)mousePosition.x;  
            measurement.at<float>(1) = (float)mousePosition.y;          
      
            //4.update  
            KF.correct(measurement);  
      
            //draw   
            image.setTo(Scalar(255,255,255,0));  
            circle(image,predict_pt,5,Scalar(0,255,0),3);    //predicted point with green  
            circle(image,mousePosition,5,Scalar(255,0,0),3); //current position with red          
              
            char buf[256];  
            sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);  
            putText(image,buf,Point(10,30),CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,Scalar(0,0,0),1,8);  
            sprintf_s(buf,256,"current position :(%3d,%3d)",mousePosition.x,mousePosition.y);  
            putText(image,buf,cvPoint(10,60),CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,Scalar(0,0,0),1,8);  
              
            imshow("kalman", image);  
            int key=waitKey(3);  
            if (key==27){//esc     
                break;     
            }         
        }  
    }  

其他例子可以参考:
https://blog.csdn.net/haima1998/article/details/80641628