对使用无迹卡尔曼滤波进行状态估计的理解
程序员文章站
2022-07-12 10:19:44
...
1 简述
2 无迹卡尔曼滤波的思想
3 无迹卡尔曼滤波的核心公式
4 两个例子
"""
Unscented kalman filter (UKF) localization sample
author: Atsushi Sakai (@Atsushi_twi)
"""
import math
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.transform import Rotation as Rot
import scipy.linalg
# Covariance for UKF simulation
Q = np.diag([
0.1, # variance of location on x-axis
0.1, # variance of location on y-axis
np.deg2rad(1.0), # variance of yaw angle
1.0 # variance of velocity
]) ** 2 # predict state covariance
R = np.diag([1.0, 1.0]) ** 2 # Observation x,y position covariance
# Simulation parameter
INPUT_NOISE = np.diag([1.0, np.deg2rad(30.0)]) ** 2
GPS_NOISE = np.diag([0.5, 0.5]) ** 2
DT = 0.1 # time tick [s]
SIM_TIME = 50.0 # simulation time [s]
# UKF Parameter
ALPHA = 0.001
BETA = 2
KAPPA = 0
show_animation = True
def calc_input():
v = 1.0 # [m/s]
yawRate = 0.1 # [rad/s]
u = np.array([[v, yawRate]]).T
return u
def observation(xTrue, xd, u):
xTrue = motion_model(xTrue, u)
# add noise to gps x-y
z = observation_model(xTrue) + GPS_NOISE @ np.random.randn(2, 1)
# add noise to input
ud = u + INPUT_NOISE @ np.random.randn(2, 1)
xd = motion_model(xd, ud)
return xTrue, z, xd, ud
def motion_model(x, u):
F = np.array([[1.0, 0, 0, 0],
[0, 1.0, 0, 0],
[0, 0, 1.0, 0],
[0, 0, 0, 0]])
B = np.array([[DT * math.cos(x[2]), 0],
[DT * math.sin(x[2]), 0],
[0.0, DT],
[1.0, 0.0]])
x = F @ x + B @ u
return x
def observation_model(x):
H = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0]
])
z = H @ x
return z
def generate_sigma_points(xEst, PEst, gamma):
sigma = xEst
Psqrt = scipy.linalg.sqrtm(PEst)
n = len(xEst[:, 0])
# Positive direction
for i in range(n):
sigma = np.hstack((sigma, xEst + gamma * Psqrt[:, i:i + 1]))
# Negative direction
for i in range(n):
sigma = np.hstack((sigma, xEst - gamma * Psqrt[:, i:i + 1]))
return sigma
def predict_sigma_motion(sigma, u):
"""
Sigma Points prediction with motion model
"""
for i in range(sigma.shape[1]):
sigma[:, i:i + 1] = motion_model(sigma[:, i:i + 1], u)
return sigma
def predict_sigma_observation(sigma):
"""
Sigma Points prediction with observation model
"""
for i in range(sigma.shape[1]):
sigma[0:2, i] = observation_model(sigma[:, i])
sigma = sigma[0:2, :]
return sigma
def calc_sigma_covariance(x, sigma, wc, Pi):
nSigma = sigma.shape[1]
d = sigma - x[0:sigma.shape[0]]
P = Pi
for i in range(nSigma):
P = P + wc[0, i] * d[:, i:i + 1] @ d[:, i:i + 1].T
return P
def calc_pxz(sigma, x, z_sigma, zb, wc):
nSigma = sigma.shape[1]
dx = sigma - x
dz = z_sigma - zb[0:2]
P = np.zeros((dx.shape[0], dz.shape[0]))
for i in range(nSigma):
P = P + wc[0, i] * dx[:, i:i + 1] @ dz[:, i:i + 1].T
return P
def ukf_estimation(xEst, PEst, z, u, wm, wc, gamma):
# Predict
sigma = generate_sigma_points(xEst, PEst, gamma)
sigma = predict_sigma_motion(sigma, u)
xPred = (wm @ sigma.T).T
PPred = calc_sigma_covariance(xPred, sigma, wc, Q)
# Update
zPred = observation_model(xPred)
y = z - zPred
sigma = generate_sigma_points(xPred, PPred, gamma)
zb = (wm @ sigma.T).T
z_sigma = predict_sigma_observation(sigma)
st = calc_sigma_covariance(zb, z_sigma, wc, R)
Pxz = calc_pxz(sigma, xPred, z_sigma, zb, wc)
K = Pxz @ np.linalg.inv(st)
xEst = xPred + K @ y
PEst = PPred - K @ st @ K.T
return xEst, PEst
def plot_covariance_ellipse(xEst, PEst): # pragma: no cover
Pxy = PEst[0:2, 0:2]
eigval, eigvec = np.linalg.eig(Pxy)
if eigval[0] >= eigval[1]:
bigind = 0
smallind = 1
else:
bigind = 1
smallind = 0
t = np.arange(0, 2 * math.pi + 0.1, 0.1)
a = math.sqrt(eigval[bigind])
b = math.sqrt(eigval[smallind])
x = [a * math.cos(it) for it in t]
y = [b * math.sin(it) for it in t]
angle = math.atan2(eigvec[1, bigind], eigvec[0, bigind])
rot = Rot.from_euler('z', angle).as_matrix()[0:2, 0:2]
fx = rot @ np.array([x, y])
px = np.array(fx[0, :] + xEst[0, 0]).flatten()
py = np.array(fx[1, :] + xEst[1, 0]).flatten()
plt.plot(px, py, "--r")
def setup_ukf(nx):
lamb = ALPHA ** 2 * (nx + KAPPA) - nx
# calculate weights
wm = [lamb / (lamb + nx)]
wc = [(lamb / (lamb + nx)) + (1 - ALPHA ** 2 + BETA)]
for i in range(2 * nx):
wm.append(1.0 / (2 * (nx + lamb)))
wc.append(1.0 / (2 * (nx + lamb)))
gamma = math.sqrt(nx + lamb)
wm = np.array([wm])
wc = np.array([wc])
return wm, wc, gamma
def main():
print(__file__ + " start!!")
nx = 4 # State Vector [x y yaw v]'
xEst = np.zeros((nx, 1))
xTrue = np.zeros((nx, 1))
PEst = np.eye(nx)
xDR = np.zeros((nx, 1)) # Dead reckoning
wm, wc, gamma = setup_ukf(nx)
# history
hxEst = xEst
hxTrue = xTrue
hxDR = xTrue
hz = np.zeros((2, 1))
time = 0.0
while SIM_TIME >= time:
time += DT
u = calc_input()
xTrue, z, xDR, ud = observation(xTrue, xDR, u)
xEst, PEst = ukf_estimation(xEst, PEst, z, ud, wm, wc, gamma)
# store data history
hxEst = np.hstack((hxEst, xEst))
hxDR = np.hstack((hxDR, xDR))
hxTrue = np.hstack((hxTrue, xTrue))
hz = np.hstack((hz, z))
if show_animation:
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.plot(hz[0, :], hz[1, :], ".g")
plt.plot(np.array(hxTrue[0, :]).flatten(),
np.array(hxTrue[1, :]).flatten(), "-b")
plt.plot(np.array(hxDR[0, :]).flatten(),
np.array(hxDR[1, :]).flatten(), "-k")
plt.plot(np.array(hxEst[0, :]).flatten(),
np.array(hxEst[1, :]).flatten(), "-r")
plot_covariance_ellipse(xEst, PEst)
plt.axis("equal")
plt.grid(True)
plt.pause(0.001)
if __name__ == '__main__':
main()
推荐阅读