欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

卡尔曼滤波追踪——鼠标轨迹预测

程序员文章站 2022-03-05 16:24:18
...
import cv2
import numpy as np
import matplotlib.pyplot as plt
 
frame = cv2.imread('inference_results/001.png') 
height, weigth = frame.shape[0], frame.shape[1]
print(height,weigth)
last_mes = current_mes = np.array((0,height//2),np.float32)  # 保存当前中心点,可替换为船舶检测出来的中心点坐标格式为[[x][y]]
last_pre = current_pre = np.array((0,height//2),np.float32)  # 保存预测[[x][y][x误差][y误差]]

def mousemove(event, x,y,s,p):
    # x和y需要自己抛出来,中心点左边的x,y
    global frame, current_mes, last_mes, current_pre, last_pre

    last_pre = current_pre
    last_mes = current_mes
    
    current_mes = np.array([[np.float32(x)],[np.float32(y)]])
    
    kalman.correct(current_mes)
    current_pre = kalman.predict()

    lmx, lmy = last_mes[0],last_mes[1]
    lpx, lpy = last_pre[0],last_pre[1]
    cmx, cmy = current_mes[0],current_mes[1]    
    cpx, cpy = current_pre[0],current_pre[1]    
    cv2.line(frame, (lmx,lmy),(cmx,cmy),(0,200,0))  # 实际轨迹
    cv2.line(frame, (lpx,lpy),(cpx,cpy),(0,0,200))  # 预测轨迹
 
 
cv2.namedWindow("Kalman")
cv2.setMouseCallback("Kalman", mousemove)   
kalman = cv2.KalmanFilter(4,2)
kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)
kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]], np.float32)
kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], np.float32) * 0.003
kalman.measurementNoiseCov = np.array([[1,0],[0,1]], np.float32) * 1
 
while(True):
    cv2.imshow('Kalman',frame)
    if cv2.waitKey(1) & 0xFF == 27:
        break
 
cv2.destroyAllWindows()