卡尔曼滤波追踪——鼠标轨迹预测
程序员文章站
2022-03-05 16:24:18
...
import cv2
import numpy as np
import matplotlib.pyplot as plt
frame = cv2.imread('inference_results/001.png')
height, weigth = frame.shape[0], frame.shape[1]
print(height,weigth)
last_mes = current_mes = np.array((0,height//2),np.float32) # 保存当前中心点,可替换为船舶检测出来的中心点坐标格式为[[x][y]]
last_pre = current_pre = np.array((0,height//2),np.float32) # 保存预测[[x][y][x误差][y误差]]
def mousemove(event, x,y,s,p):
# x和y需要自己抛出来,中心点左边的x,y
global frame, current_mes, last_mes, current_pre, last_pre
last_pre = current_pre
last_mes = current_mes
current_mes = np.array([[np.float32(x)],[np.float32(y)]])
kalman.correct(current_mes)
current_pre = kalman.predict()
lmx, lmy = last_mes[0],last_mes[1]
lpx, lpy = last_pre[0],last_pre[1]
cmx, cmy = current_mes[0],current_mes[1]
cpx, cpy = current_pre[0],current_pre[1]
cv2.line(frame, (lmx,lmy),(cmx,cmy),(0,200,0)) # 实际轨迹
cv2.line(frame, (lpx,lpy),(cpx,cpy),(0,0,200)) # 预测轨迹
cv2.namedWindow("Kalman")
cv2.setMouseCallback("Kalman", mousemove)
kalman = cv2.KalmanFilter(4,2)
kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)
kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]], np.float32)
kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]], np.float32) * 0.003
kalman.measurementNoiseCov = np.array([[1,0],[0,1]], np.float32) * 1
while(True):
cv2.imshow('Kalman',frame)
if cv2.waitKey(1) & 0xFF == 27:
break
cv2.destroyAllWindows()
上一篇: Kalman滤波 python实现
下一篇: Apollo视觉感知跑起来