Pandas统计重复的列里面的值方法
程序员文章站
2022-04-19 13:32:58
pandas
代码如下:
import pandas as pd
import numpy as np
salaries = pd.dataframe(...
pandas
代码如下:
import pandas as pd import numpy as np salaries = pd.dataframe({ 'name': ['boss', 'lilei', 'lilei', 'han', 'boss', 'boss', 'han', 'boss'], 'year': [2016, 2016, 2016, 2016, 2017, 2017, 2017, 2017], 'salary': [1, 2, 3, 4, 5, 6, 7, 8], 'bonus': [2, 2, 2, 2, 3, 4, 5, 6] }) print(salaries) print(salaries['bonus'].duplicated(keep='first')) print(salaries[salaries['bonus'].duplicated(keep='first')].index) print(salaries[salaries['bonus'].duplicated(keep='first')]) print(salaries['bonus'].duplicated(keep='last')) print(salaries[salaries['bonus'].duplicated(keep='last')].index) print(salaries[salaries['bonus'].duplicated(keep='last')])
输出如下:
bonus salary year name 0 2 1 2016 boss 1 2 2 2016 lilei 2 2 3 2016 lilei 3 2 4 2016 han 4 3 5 2017 boss 5 4 6 2017 boss 6 5 7 2017 han 7 6 8 2017 boss 0 false 1 true 2 true 3 true 4 false 5 false 6 false 7 false name: bonus, dtype: bool int64index([1, 2, 3], dtype='int64') bonus salary year name 1 2 2 2016 lilei 2 2 3 2016 lilei 3 2 4 2016 han 0 true 1 true 2 true 3 false 4 false 5 false 6 false 7 false name: bonus, dtype: bool int64index([0, 1, 2], dtype='int64') bonus salary year name 0 2 1 2016 boss 1 2 2 2016 lilei 2 2 3 2016 lilei
非pandas
对于如nunpy中的这些操作主要如下:
假设有数组
a = np.array([1, 2, 1, 3, 3, 3, 0])
想找出 [1 3]
则有
方法1 m = np.zeros_like(a, dtype=bool) m[np.unique(a, return_index=true)[1]] = true a[~m]
方法2 a[~np.in1d(np.arange(len(a)), np.unique(a, return_index=true)[1], assume_unique=true)]
方法3 np.setxor1d(a, np.unique(a), assume_unique=true)
方法4 u, i = np.unique(a, return_inverse=true) u[np.bincount(i) > 1]
方法5 s = np.sort(a, axis=none) s[:-1][s[1:] == s[:-1]]
参考:https://*.com/questions/11528078/determining-duplicate-values-in-an-array
以上这篇pandas统计重复的列里面的值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。