Java之多线程之Lock与Condition
程序员文章站
2022-04-19 08:23:10
...
Java之多线程之Lock
接上文
在多线程环境中,大部分情况下,使用 synchronized 关键字可以满足需求。
但是其也存在不足。于是 java.util.concurrent.locks 包出现了。
第一篇
背景
在Java中实现线程同步的传统方法是使用synchronized关键字。
虽然它提供了一定的基本同步,但synchronized参数在使用时非常死板。
例如,一个线程只能锁一次。 同步块不提供等待队列的任何机制,
并且在一个线程退出后,任何线程都可以获取锁定。
这可能导致很长一段时间内某些其他线程的资源匮乏。
Java 从 1.5 开始,提供了可重入锁,以提供更大的灵活性同步。
一、概念
可重入锁
ReentrantLock
当某一线程在已经获取到该锁时,可再多次请求获取该锁,而该线程不会被阻塞而造成死锁。
它在线程不知是否已经获取到锁资源的情况下使用,非常有用。
相反,如果一个锁是不可重入的,当你已经获取到该锁资源,然后再次尝试获取该锁资源时,
就会自己把自己给锁住,造成线程死锁,一直阻塞在那里。
说明一:实现了Lock接口的类,都是可重入的。
可重入锁是 java.util.concurrent.locks.Lock 接口的实现之一。
另一个实现是 ReentrantReadWriteLock。
说明二:锁线程的方法介绍
- lock(), 拿不到lock就不罢休,不然线程就一直block。 比较无赖的做法。
- tryLock(),马上返回,拿到lock就返回true,不然返回false。 比较潇洒的做法。
- 带时间限制的tryLock(),拿不到lock,就等一段时间,超时返回false。比较聪明的做法。
- tryInterruptibly:在锁上等待,直到获取锁,但是会响应中断,
这个方法优先考虑响应中断,而不是响应锁的普通获取或重入获取。
二、代码示例
第二篇
一、Lock API 的主要类介绍
1、Lock 接口 - 实现类 ReentrantLock
接口类。规定了Lock的基本方法,这些方法可以满足所有 synchronized 的功能,
还提供了更多功能:Lock条件判断、Lock超时判断。
其最主要的方法:
lock():获取锁
unlock():释放锁
tryLock():等待锁一段时间再锁
newCondition():根据条件进行锁
1.1 Condition
背景知识:
- wait()、notify()
在多线程进行协同工作时,需要用到 wait()、notify() 。
wait()、notify() 只能用在 synchronized 块内部,而且是,synchronized 哪个对象,就得调用哪个对象的 wait()、notify() 方法。
Condition 类与Object类的 wait()、notify() 方法功能差不多。
但是提供了更多:可以创建不同的 wait 集合。
Condition 的实例必须由 Lock 类创建,而不是自己去 new 而产生。
主要方法:
await():类似于 Object.wait()
signal():类似于 Object.notify()
signalAll():类似于 Object.notifyAll()
1.2 ReentrantLock
该类被使用的最为广泛。它是在功能上实现了 synchronized 的类。
除了实现了从 Lock 接口继承的方法,它还自己有一些方法:
比如让线程等待一段时间再去获取资源的锁。
什么是 reentrant (可重入)?
其实 synchronized 代码块原本就是可重入(reentrant)的:
例如:
某线程正在执行 synchronized 代码块一,代码块一中需要执行代码块二,
两个代码块锁定的是同一个资源,此时线程一可以顺利执行此两个代码块。
无需重复获取资源的锁,即:资源锁重用。
看下面的例子:
线程在执行 foo()时,需要执行 bar(),此时直接执行即可,无需重复获取锁。
因为这两个 synchronized 代码块锁定的是同一个对象:this
2、ReadWriteLock 接口 - 实现类 ReentrantReadWriteLock
该类包含了一对相互关联的锁。
一种是:只读锁(Read-Only)。如果没有其它线程在占有写锁,该锁可以被多个线程同时拥有。
一种是:写锁。如果没有线程在占有读锁或写锁,该锁只能被一个线程独占。
二、Lock 使用示例
1、先看看用 synchronized 的写法:
2、使用 java.util.concurrent.locks.Lock 的写法:
3、ReentrantReadWriteLock
4. ReentrantReadWriteLock 使用Lock 实现缓存。
5. 双condition实现的阻塞式消息队列。
6. 使用 3 个 condition,使每个子线程各自交替执行。
7. Semaphore
Semaphore可以控制某个资源可被同时访问的个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。
比如在Windows下可以设置共享文件的最大客户端访问个数。
java.util.concurrent包之Execuotor系列文章
00_Java之 java.util.concurrent 包之概述
01_Java之java.util.concurrent包之Executor与ExecutorService
02_Java之 java.util.concurrent 包之ExecutorService之submit () 之 Future
03_Java之多线程之Callable与Future
04_Java之多线程之Lock
-
转载请注明,
原文出处:http://lixh1986.iteye.com/blog/2351294
引用:
http://www.journaldev.com/2377/java-lock-example-reentrantlock
接上文
在多线程环境中,大部分情况下,使用 synchronized 关键字可以满足需求。
但是其也存在不足。于是 java.util.concurrent.locks 包出现了。
第一篇
背景
在Java中实现线程同步的传统方法是使用synchronized关键字。
虽然它提供了一定的基本同步,但synchronized参数在使用时非常死板。
例如,一个线程只能锁一次。 同步块不提供等待队列的任何机制,
并且在一个线程退出后,任何线程都可以获取锁定。
这可能导致很长一段时间内某些其他线程的资源匮乏。
Java 从 1.5 开始,提供了可重入锁,以提供更大的灵活性同步。
一、概念
可重入锁
ReentrantLock
当某一线程在已经获取到该锁时,可再多次请求获取该锁,而该线程不会被阻塞而造成死锁。
它在线程不知是否已经获取到锁资源的情况下使用,非常有用。
相反,如果一个锁是不可重入的,当你已经获取到该锁资源,然后再次尝试获取该锁资源时,
就会自己把自己给锁住,造成线程死锁,一直阻塞在那里。
说明一:实现了Lock接口的类,都是可重入的。
可重入锁是 java.util.concurrent.locks.Lock 接口的实现之一。
另一个实现是 ReentrantReadWriteLock。
说明二:锁线程的方法介绍
- lock(), 拿不到lock就不罢休,不然线程就一直block。 比较无赖的做法。
- tryLock(),马上返回,拿到lock就返回true,不然返回false。 比较潇洒的做法。
- 带时间限制的tryLock(),拿不到lock,就等一段时间,超时返回false。比较聪明的做法。
- tryInterruptibly:在锁上等待,直到获取锁,但是会响应中断,
这个方法优先考虑响应中断,而不是响应锁的普通获取或重入获取。
二、代码示例
//Java code to illustrate Reentrant Locks import java.text.SimpleDateFormat; import java.util.Date; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.locks.ReentrantLock; class worker implements Runnable { SimpleDateFormat ft = new SimpleDateFormat("hh:mm:ss"); String jobName; ReentrantLock re; public worker(ReentrantLock rl, String n) { re = rl; jobName = n; } public void run() { boolean done = false; while (!done) { // Get lock - for the first time (outer lock) boolean ans = re.tryLock(); // Returns True if lock is free if (ans) { try { log("task %s - outer lock acquired at %s, Doing outer work - 1.5 s, lockHoldCount: %d", jobName, ft.format(new Date()), re.getHoldCount()); Thread.sleep(1500); // re lock - for the second time (inner lock) // This can happens in other method of other classes. re.lock(); try { log("task %s - inner lock acquired at %s, Doing inner work - 1.5 s, lockHoldCount: %d", jobName, ft.format(new Date()), re.getHoldCount()); Thread.sleep(1500); } catch (InterruptedException e) { e.printStackTrace(); } finally { // Inner lock release re.unlock(); log("task %s - releasing inner lock, lockHoldCount: %d", jobName, re.getHoldCount()); } log("task %s - work done", jobName); done = true; } catch (InterruptedException e) { e.printStackTrace(); } finally { // Outer lock release re.unlock(); log("task %s - releasing outer lock, lockHoldCount: %d", jobName, re.getHoldCount()); } } else { log("task %s - waiting for lock - 1 s", jobName); try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } } private void log(String pattern, Object... args) { System.out.println(String.format(pattern, args)); } } public class ReentrantLockTest { static final int MAX_T = 4; public static void main(String[] args) { ReentrantLock rel = new ReentrantLock(); ExecutorService pool = Executors.newFixedThreadPool(MAX_T); Runnable w1 = new worker(rel, "Job1"); Runnable w2 = new worker(rel, "Job2"); Runnable w3 = new worker(rel, "Job3"); Runnable w4 = new worker(rel, "Job4"); pool.execute(w1); pool.execute(w2); pool.execute(w3); pool.execute(w4); pool.shutdown(); } } /* output: task Job2 - waiting for lock - 1 s task Job4 - waiting for lock - 1 s task Job1 - outer lock acquired at 10:53:27, Doing outer work - 1.5 s, lockHoldCount: 1 task Job3 - waiting for lock - 1 s task Job4 - waiting for lock - 1 s task Job2 - waiting for lock - 1 s task Job3 - waiting for lock - 1 s task Job1 - inner lock acquired at 10:53:29, Doing inner work - 1.5 s, lockHoldCount: 2 task Job3 - waiting for lock - 1 s task Job4 - waiting for lock - 1 s task Job2 - waiting for lock - 1 s task Job1 - releasing inner lock, lockHoldCount: 1 task Job1 - work done task Job1 - releasing outer lock, lockHoldCount: 0 task Job3 - waiting for lock - 1 s task Job4 - waiting for lock - 1 s task Job2 - outer lock acquired at 10:53:31, Doing outer work - 1.5 s, lockHoldCount: 1 task Job4 - waiting for lock - 1 s task Job3 - waiting for lock - 1 s task Job2 - inner lock acquired at 10:53:32, Doing inner work - 1.5 s, lockHoldCount: 2 task Job4 - waiting for lock - 1 s task Job3 - waiting for lock - 1 s task Job2 - releasing inner lock, lockHoldCount: 1 task Job2 - work done task Job2 - releasing outer lock, lockHoldCount: 0 task Job3 - waiting for lock - 1 s task Job4 - outer lock acquired at 10:53:34, Doing outer work - 1.5 s, lockHoldCount: 1 task Job3 - waiting for lock - 1 s task Job4 - inner lock acquired at 10:53:35, Doing inner work - 1.5 s, lockHoldCount: 2 task Job3 - waiting for lock - 1 s task Job4 - releasing inner lock, lockHoldCount: 1 task Job4 - work done task Job4 - releasing outer lock, lockHoldCount: 0 task Job3 - outer lock acquired at 10:53:37, Doing outer work - 1.5 s, lockHoldCount: 1 task Job3 - inner lock acquired at 10:53:38, Doing inner work - 1.5 s, lockHoldCount: 2 task Job3 - releasing inner lock, lockHoldCount: 1 task Job3 - work done task Job3 - releasing outer lock, lockHoldCount: 0 */
第二篇
一、Lock API 的主要类介绍
1、Lock 接口 - 实现类 ReentrantLock
接口类。规定了Lock的基本方法,这些方法可以满足所有 synchronized 的功能,
还提供了更多功能:Lock条件判断、Lock超时判断。
其最主要的方法:
lock():获取锁
unlock():释放锁
tryLock():等待锁一段时间再锁
newCondition():根据条件进行锁
1.1 Condition
背景知识:
- wait()、notify()
在多线程进行协同工作时,需要用到 wait()、notify() 。
wait()、notify() 只能用在 synchronized 块内部,而且是,synchronized 哪个对象,就得调用哪个对象的 wait()、notify() 方法。
Condition 类与Object类的 wait()、notify() 方法功能差不多。
但是提供了更多:可以创建不同的 wait 集合。
Condition 的实例必须由 Lock 类创建,而不是自己去 new 而产生。
主要方法:
await():类似于 Object.wait()
signal():类似于 Object.notify()
signalAll():类似于 Object.notifyAll()
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; import org.junit.Test; // 方法一: // 使用 wait 和 notify 控制线程, // 使子线程和主线程各交替执行一次。 //===================================================================== class UseWaitNotify { private Object dummy = new Object(); private boolean flag = true; public void subThread() { synchronized (dummy){ while(!flag){ try { dummy.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("[UseWaitNotify] sub.."); flag = false; dummy.notify(); } } public void mainThread(){ synchronized (dummy){ while(flag){ try { dummy.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("[UseWaitNotify] main.."); flag = true; dummy.notify(); } } } // test method class WaitNotify{ @Test public void testUseWaitNotify(){ UseWaitNotify useWaitNotify = new UseWaitNotify(); new Thread(new Runnable(){ @Override public void run() { for(int i = 0 ; i< 10; i++){ useWaitNotify.subThread(); } } }).start(); for(int i = 0 ; i< 10; i++){ useWaitNotify.mainThread(); } } } //方法二: //使用 await 和 signal 控制线程, //使子线程和主线程各交替执行一次。 //===================================================================== class UseCondition { private Lock lock = new ReentrantLock(); private Condition condition = lock.newCondition(); private boolean flag = true; public void subThread(){ lock.lock(); try{ while(!flag){ try { condition.await(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("[UseCondition] sub.."); flag = false; condition.signal(); }finally{ lock.unlock(); } } public void mainThread(){ lock.lock(); try{ while(flag){ try { condition.await(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("[UseCondition] main.."); flag = true; condition.signal(); }finally{ lock.unlock(); } } } //test method public class LockCondition { @Test public void testUseCondition(){ UseCondition useCondition = new UseCondition(); new Thread(new Runnable(){ @Override public void run() { for(int i = 0 ; i< 10; i++){ useCondition.subThread(); } } }).start(); for(int i = 0 ; i< 10; i++){ useCondition.mainThread(); } } }
1.2 ReentrantLock
该类被使用的最为广泛。它是在功能上实现了 synchronized 的类。
除了实现了从 Lock 接口继承的方法,它还自己有一些方法:
比如让线程等待一段时间再去获取资源的锁。
什么是 reentrant (可重入)?
其实 synchronized 代码块原本就是可重入(reentrant)的:
例如:
某线程正在执行 synchronized 代码块一,代码块一中需要执行代码块二,
两个代码块锁定的是同一个资源,此时线程一可以顺利执行此两个代码块。
无需重复获取资源的锁,即:资源锁重用。
看下面的例子:
public class Test{ public synchronized foo(){ //do something bar(); } public synchronized bar(){ //do some more } }
线程在执行 foo()时,需要执行 bar(),此时直接执行即可,无需重复获取锁。
因为这两个 synchronized 代码块锁定的是同一个对象:this
2、ReadWriteLock 接口 - 实现类 ReentrantReadWriteLock
该类包含了一对相互关联的锁。
一种是:只读锁(Read-Only)。如果没有其它线程在占有写锁,该锁可以被多个线程同时拥有。
一种是:写锁。如果没有线程在占有读锁或写锁,该锁只能被一个线程独占。
二、Lock 使用示例
1、先看看用 synchronized 的写法:
public class Resource { private Object dummy = new Object(); public void doSomething(){ synchronized(dummy){ System.out.println("do something..."); } } public void doLogging(){ System.out.println("do logging..."); } }
2、使用 java.util.concurrent.locks.Lock 的写法:
public class LockResource { private Lock lock; public LockResource(){ this.lock = new ReentrantLock(); } public void doSomething(){ try { if(lock.tryLock(10, TimeUnit.SECONDS)){ //时间单位:秒 System.out.println("do something.."); } } catch (InterruptedException e) { e.printStackTrace(); } finally{ lock.unlock(); // release the lock. } } public void doLogging(){ System.out.println("do logging..."); } }
3、ReentrantReadWriteLock
class Queue3{ private Object data = null; ReadWriteLock lock = new ReentrantReadWriteLock(); /* Read lock: - make sure no thread is writing. */ public void get(){ lock.readLock().lock(); System.out.println("read data..." + data); lock.readLock().unlock(); } /* Write lock: - make sure no thread is writing. - make sure no thread is reading. */ public void set(Object data){ lock.writeLock().lock(); System.out.println("write data..."); this.data = data; lock.writeLock().unlock(); } }
4. ReentrantReadWriteLock 使用Lock 实现缓存。
class CachedData { Object data; volatile boolean cacheValid; final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); void processCachedData() { rwl.readLock().lock(); if (!cacheValid) { // Must release read lock before acquiring write lock rwl.readLock().unlock(); rwl.writeLock().lock(); try { // Recheck state because another thread might have // acquired write lock and changed state before we did. if (!cacheValid) { data = ... cacheValid = true; } // Downgrade by acquiring read lock before releasing write lock rwl.readLock().lock(); } finally { rwl.writeLock().unlock(); // Unlock write, still hold read } } try { use(data); } finally { rwl.readLock().unlock(); } } }
5. 双condition实现的阻塞式消息队列。
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * 双condition实现的阻塞式消息队列。 * - 队列满时,不存 * - 队列空时,不取 */ public class LockConditionBlockingQueue { final Lock lock = new ReentrantLock(); final Condition notFull = lock.newCondition(); //控制存操作 final Condition notEmpty = lock.newCondition();//控制取操作 final Object[] items = new Object[100]; int putptr, takeptr, count; public void put(Object x) throws InterruptedException { lock.lock(); try { while (count == items.length) notFull.await(); items[putptr] = x; if (++putptr == items.length) putptr = 0; ++count; notEmpty.signal(); } finally { lock.unlock(); } } public Object take() throws InterruptedException { lock.lock(); try { while (count == 0) notEmpty.await(); Object x = items[takeptr]; if (++takeptr == items.length) takeptr = 0; --count; notFull.signal(); return x; } finally { lock.unlock(); } } }
6. 使用 3 个 condition,使每个子线程各自交替执行。
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; import org.junit.Test; public class LockConditionThree { final int maxLoop = 100; @Test public void testUseCondition(){ UseCondition useCondition = new UseCondition(); new Thread(new Runnable(){ @Override public void run() { for(int i = 0 ; i< maxLoop; i++){ useCondition.sub1(); } } }).start(); new Thread(new Runnable(){ @Override public void run() { for(int i = 0 ; i< maxLoop; i++){ useCondition.sub2(); } } }).start(); new Thread(new Runnable(){ @Override public void run() { for(int i = 0 ; i< maxLoop; i++){ useCondition.sub3(); } } }).start(); } //使用 3 个 condition,使每个子线程各自交替执行。 //======================================================= static class UseCondition { private Lock lock = new ReentrantLock(); private Condition condition1 = lock.newCondition(); private Condition condition2 = lock.newCondition(); private Condition condition3 = lock.newCondition(); private int shouldSub = 1; public void sub1(){ lock.lock(); try{ while(shouldSub != 1){ try { condition1.await(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("sub1.."); shouldSub = 2; condition2.signal(); //notify thread 2 }finally{ lock.unlock(); } } public void sub2(){ lock.lock(); try{ while(shouldSub != 2){ try { condition2.await(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("sub2.."); shouldSub = 3; condition3.signal(); //notify thread 3 }finally{ lock.unlock(); } } public void sub3(){ lock.lock(); try{ while(shouldSub != 3){ try { condition3.await(); } catch (InterruptedException e) { e.printStackTrace(); } } System.out.println("sub3..\n"); shouldSub = 1; condition1.signal(); //notify thread 1 }finally{ lock.unlock(); } } } }
7. Semaphore
Semaphore可以控制某个资源可被同时访问的个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。
比如在Windows下可以设置共享文件的最大客户端访问个数。
import java.util.concurrent.Executors; import java.util.concurrent.ExecutorService; import java.util.concurrent.Semaphore; public class LockSemephore { public static void main(String[] args) { ExecutorService exec = Executors.newCachedThreadPool(); final Semaphore semp = new Semaphore(5); // 同时只能5个线程使用 for (int index = 0; index < 20; index++) { // 模拟20个客户端访问 final int NO = index; exec.execute(new Runnable() { public void run() { try { semp.acquire();// 获取许可 System.out.println("Accessing: " + NO); Thread.sleep(2000); semp.release();// 访问完后,释放 System.out.println("AvailablePermits:---------" + semp.availablePermits()); } catch (InterruptedException e) { e.printStackTrace(); } } }); } // 退出线程池 exec.shutdown(); System.out.println("done!"); } }
java.util.concurrent包之Execuotor系列文章
00_Java之 java.util.concurrent 包之概述
01_Java之java.util.concurrent包之Executor与ExecutorService
02_Java之 java.util.concurrent 包之ExecutorService之submit () 之 Future
03_Java之多线程之Callable与Future
04_Java之多线程之Lock
-
转载请注明,
原文出处:http://lixh1986.iteye.com/blog/2351294
引用:
http://www.journaldev.com/2377/java-lock-example-reentrantlock