欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Java之多线程之Lock与Condition

程序员文章站 2022-06-17 09:07:01
...
Java之多线程之Lock

接上文
在多线程环境中,大部分情况下,使用 synchronized 关键字可以满足需求。
但是其也存在不足。于是 java.util.concurrent.locks 包出现了。


第一篇

背景

在Java中实现线程同步的传统方法是使用synchronized关键字。
虽然它提供了一定的基本同步,但synchronized参数在使用时非常死板。
例如,一个线程只能锁一次。 同步块不提供等待队列的任何机制,
并且在一个线程退出后,任何线程都可以获取锁定。
这可能导致很长一段时间内某些其他线程的资源匮乏。

Java 从 1.5 开始,提供了可重入锁,以提供更大的灵活性同步。


一、概念
可重入锁
ReentrantLock

当某一线程在已经获取到该锁时,可再多次请求获取该锁,而该线程不会被阻塞而造成死锁。
它在线程不知是否已经获取到锁资源的情况下使用,非常有用。
相反,如果一个锁是不可重入的,当你已经获取到该锁资源,然后再次尝试获取该锁资源时,
就会自己把自己给锁住,造成线程死锁,一直阻塞在那里。


说明一:实现了Lock接口的类,都是可重入的。
可重入锁是 java.util.concurrent.locks.Lock 接口的实现之一。
另一个实现是 ReentrantReadWriteLock。

说明二:锁线程的方法介绍
- lock(), 拿不到lock就不罢休,不然线程就一直block。 比较无赖的做法。

- tryLock(),马上返回,拿到lock就返回true,不然返回false。 比较潇洒的做法。   
- 带时间限制的tryLock(),拿不到lock,就等一段时间,超时返回false。比较聪明的做法。

- tryInterruptibly:在锁上等待,直到获取锁,但是会响应中断,
这个方法优先考虑响应中断,而不是响应锁的普通获取或重入获取。


二、代码示例


//Java code to illustrate Reentrant Locks 
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.locks.ReentrantLock;

class worker implements Runnable {
    SimpleDateFormat ft = new SimpleDateFormat("hh:mm:ss");
    
    String jobName;
    ReentrantLock re;

    public worker(ReentrantLock rl, String n) {
        re = rl;
        jobName = n;
    }

    public void run() {
        boolean done = false;
        while (!done) {
            // Get lock - for the first time (outer lock)
            boolean ans = re.tryLock();

            // Returns True if lock is free
            if (ans) {
                try {
                    log("task %s - outer lock acquired at %s, Doing outer work - 1.5 s, lockHoldCount: %d", 
                            jobName, ft.format(new Date()), re.getHoldCount());
                    
                    Thread.sleep(1500);

                    // re lock - for the second time (inner lock)
                    // This can happens in other method of other classes.
                    re.lock();
                    try {
                        log("task %s - inner lock acquired at %s, Doing inner work - 1.5 s, lockHoldCount: %d", 
                                jobName, ft.format(new Date()), re.getHoldCount());
                        Thread.sleep(1500);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        // Inner lock release
                        re.unlock();
                        
                        log("task %s - releasing inner lock, lockHoldCount: %d", 
                                jobName, re.getHoldCount());
                    }
                    log("task %s - work done", jobName);
                    
                    done = true;
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // Outer lock release
                    re.unlock();
                    
                    log("task %s - releasing outer lock, lockHoldCount: %d", 
                            jobName, re.getHoldCount());
                }
            } else {
                log("task %s - waiting for lock - 1 s", jobName);
                
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    }
    
    private void log(String pattern, Object... args) {
        System.out.println(String.format(pattern, args));
    }
}

public class ReentrantLockTest {
    static final int MAX_T = 4;

    public static void main(String[] args) {
        ReentrantLock rel = new ReentrantLock();
        ExecutorService pool = Executors.newFixedThreadPool(MAX_T);
        Runnable w1 = new worker(rel, "Job1");
        Runnable w2 = new worker(rel, "Job2");
        Runnable w3 = new worker(rel, "Job3");
        Runnable w4 = new worker(rel, "Job4");
        pool.execute(w1);
        pool.execute(w2);
        pool.execute(w3);
        pool.execute(w4);
        pool.shutdown();
    }
}


/* output:

task Job2 - waiting for lock - 1 s
task Job4 - waiting for lock - 1 s
task Job1 - outer lock acquired at 10:53:27, Doing outer work - 1.5 s, lockHoldCount: 1
task Job3 - waiting for lock - 1 s
task Job4 - waiting for lock - 1 s
task Job2 - waiting for lock - 1 s
task Job3 - waiting for lock - 1 s
task Job1 - inner lock acquired at 10:53:29, Doing inner work - 1.5 s, lockHoldCount: 2
task Job3 - waiting for lock - 1 s
task Job4 - waiting for lock - 1 s
task Job2 - waiting for lock - 1 s
task Job1 - releasing inner lock, lockHoldCount: 1
task Job1 - work done
task Job1 - releasing outer lock, lockHoldCount: 0
task Job3 - waiting for lock - 1 s
task Job4 - waiting for lock - 1 s
task Job2 - outer lock acquired at 10:53:31, Doing outer work - 1.5 s, lockHoldCount: 1
task Job4 - waiting for lock - 1 s
task Job3 - waiting for lock - 1 s
task Job2 - inner lock acquired at 10:53:32, Doing inner work - 1.5 s, lockHoldCount: 2
task Job4 - waiting for lock - 1 s
task Job3 - waiting for lock - 1 s
task Job2 - releasing inner lock, lockHoldCount: 1
task Job2 - work done
task Job2 - releasing outer lock, lockHoldCount: 0
task Job3 - waiting for lock - 1 s
task Job4 - outer lock acquired at 10:53:34, Doing outer work - 1.5 s, lockHoldCount: 1
task Job3 - waiting for lock - 1 s
task Job4 - inner lock acquired at 10:53:35, Doing inner work - 1.5 s, lockHoldCount: 2
task Job3 - waiting for lock - 1 s
task Job4 - releasing inner lock, lockHoldCount: 1
task Job4 - work done
task Job4 - releasing outer lock, lockHoldCount: 0
task Job3 - outer lock acquired at 10:53:37, Doing outer work - 1.5 s, lockHoldCount: 1
task Job3 - inner lock acquired at 10:53:38, Doing inner work - 1.5 s, lockHoldCount: 2
task Job3 - releasing inner lock, lockHoldCount: 1
task Job3 - work done
task Job3 - releasing outer lock, lockHoldCount: 0



*/








第二篇

一、Lock API 的主要类介绍

1、Lock 接口 - 实现类 ReentrantLock
接口类。规定了Lock的基本方法,这些方法可以满足所有 synchronized 的功能,
还提供了更多功能:Lock条件判断、Lock超时判断。

其最主要的方法:
lock():获取锁
unlock():释放锁
tryLock():等待锁一段时间再锁
newCondition():根据条件进行锁

1.1 Condition

背景知识:
- wait()、notify()
在多线程进行协同工作时,需要用到 wait()、notify() 。
wait()、notify() 只能用在 synchronized 块内部,而且是,synchronized 哪个对象,就得调用哪个对象的 wait()、notify() 方法。

Condition 类与Object类的 wait()、notify() 方法功能差不多。
但是提供了更多:可以创建不同的 wait 集合。
Condition 的实例必须由 Lock 类创建,而不是自己去 new 而产生。

主要方法:
await():类似于 Object.wait()
signal():类似于 Object.notify()
signalAll():类似于 Object.notifyAll()



import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import org.junit.Test;

// 方法一:
// 使用 wait 和 notify 控制线程,
// 使子线程和主线程各交替执行一次。
//=====================================================================

class UseWaitNotify {
	
	private Object dummy = new Object();  
	private boolean flag = true;
	
	public void subThread() {
		synchronized (dummy){
			while(!flag){
				try {
					dummy.wait();
				} catch (InterruptedException e) {
					e.printStackTrace();
				}
			}
			System.out.println("[UseWaitNotify] sub..");
			flag = false;
			dummy.notify();
		}
	}
	
	public void mainThread(){
		synchronized (dummy){
			while(flag){
				try {
					dummy.wait();
				} catch (InterruptedException e) {
					e.printStackTrace();
				}
			}
			System.out.println("[UseWaitNotify] main..");
			flag = true;
			dummy.notify();
		}
	}
}

// test method
class WaitNotify{

	@Test
	public void testUseWaitNotify(){
		UseWaitNotify useWaitNotify = new UseWaitNotify();
		new Thread(new Runnable(){
			@Override
			public void run() {
				for(int i = 0 ; i< 10; i++){
					useWaitNotify.subThread();
				}
			}
		}).start();
			
		
		for(int i = 0 ; i< 10; i++){
			useWaitNotify.mainThread();
		}
		
	}
}


//方法二:
//使用 await 和 signal 控制线程,
//使子线程和主线程各交替执行一次。
//=====================================================================

class UseCondition {
	
	private Lock lock = new ReentrantLock();  
	private Condition condition = lock.newCondition();
	
	private boolean flag = true;
	
	public void subThread(){
		lock.lock();
		try{
			while(!flag){
				try {
					condition.await();
				} catch (InterruptedException e) {
					e.printStackTrace();
				}
			}
			System.out.println("[UseCondition] sub..");
			flag = false;
			condition.signal();
		}finally{
			lock.unlock();
		}
	}
	
	public void mainThread(){
		lock.lock();
		try{
			while(flag){
				try {
					condition.await();
				} catch (InterruptedException e) {
					e.printStackTrace();
				}
			}
			System.out.println("[UseCondition] main..");
			flag = true;
			condition.signal();
		}finally{
			lock.unlock();
		}
	}
}

//test method
public class LockCondition {

	@Test
	public void testUseCondition(){
		UseCondition useCondition = new UseCondition();
		new Thread(new Runnable(){
			@Override
			public void run() {
				for(int i = 0 ; i< 10; i++){
					useCondition.subThread();
				}
			}
		}).start();
			
		
		for(int i = 0 ; i< 10; i++){
			useCondition.mainThread();
		}
		
	}
}








1.2 ReentrantLock
该类被使用的最为广泛。它是在功能上实现了 synchronized 的类。
除了实现了从 Lock 接口继承的方法,它还自己有一些方法:
比如让线程等待一段时间再去获取资源的锁。

什么是 reentrant (可重入)?
其实 synchronized 代码块原本就是可重入(reentrant)的:
例如:
某线程正在执行 synchronized 代码块一,代码块一中需要执行代码块二,
两个代码块锁定的是同一个资源,此时线程一可以顺利执行此两个代码块。
无需重复获取资源的锁,即:资源锁重用。

看下面的例子:
public class Test{

public synchronized foo(){
    //do something
    bar();
  }

  public synchronized bar(){
    //do some more
  }
}

线程在执行 foo()时,需要执行 bar(),此时直接执行即可,无需重复获取锁。
因为这两个 synchronized 代码块锁定的是同一个对象:this


2、ReadWriteLock 接口 - 实现类 ReentrantReadWriteLock
该类包含了一对相互关联的锁。
一种是:只读锁(Read-Only)。如果没有其它线程在占有写锁,该锁可以被多个线程同时拥有。
一种是:写锁。如果没有线程在占有读锁或写锁,该锁只能被一个线程独占。


二、Lock 使用示例

1、先看看用 synchronized 的写法:
public class Resource {
    
    private Object dummy = new Object();
    
    public void doSomething(){
        synchronized(dummy){
            System.out.println("do something...");
        }
    }
    
    public void doLogging(){
        System.out.println("do logging...");
    }

}


2、使用 java.util.concurrent.locks.Lock 的写法:
public class LockResource {
    
    private Lock lock;
    
    public LockResource(){
        this.lock = new ReentrantLock();
    }
    
    public void doSomething(){
        try {
            if(lock.tryLock(10, TimeUnit.SECONDS)){ //时间单位:秒
                System.out.println("do something..");
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally{
            lock.unlock(); // release the lock.
        }
    }
    
    public void doLogging(){
        System.out.println("do logging...");
    }

}


3、ReentrantReadWriteLock

class Queue3{
	
	private Object data = null;
	ReadWriteLock lock = new ReentrantReadWriteLock();
	
	/*
	  Read lock: 
	  - make sure no thread is writing.
	 */
	public void get(){
		lock.readLock().lock();
		System.out.println("read data..." + data);
		lock.readLock().unlock();
	}
	
	/*
	  Write lock: 
	  - make sure no thread is writing.
	  - make sure no thread is reading.
	 */
	public void set(Object data){
		lock.writeLock().lock();
		System.out.println("write data...");
		this.data = data;
		lock.writeLock().unlock();
	}
	
}



4. ReentrantReadWriteLock 使用Lock 实现缓存。
 class CachedData {
   Object data;
   volatile boolean cacheValid;
   final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

   void processCachedData() {
     rwl.readLock().lock();
     if (!cacheValid) {
        // Must release read lock before acquiring write lock
        rwl.readLock().unlock();
        rwl.writeLock().lock();
        try {
          // Recheck state because another thread might have
          // acquired write lock and changed state before we did.
          if (!cacheValid) {
            data = ...
            cacheValid = true;
          }
          // Downgrade by acquiring read lock before releasing write lock
          rwl.readLock().lock();
        } finally {
          rwl.writeLock().unlock(); // Unlock write, still hold read
        }
     }

     try {
       use(data);
     } finally {
       rwl.readLock().unlock();
     }
   }
 }





5. 双condition实现的阻塞式消息队列。

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

/**
 * 双condition实现的阻塞式消息队列。
 * - 队列满时,不存
 * - 队列空时,不取
 */
public class LockConditionBlockingQueue {

	final Lock lock = new ReentrantLock();
	final Condition notFull = lock.newCondition(); //控制存操作
	final Condition notEmpty = lock.newCondition();//控制取操作

	final Object[] items = new Object[100];
	int putptr, takeptr, count;

	public void put(Object x) throws InterruptedException {
		lock.lock();
		try {
			while (count == items.length)
				notFull.await();
			items[putptr] = x;
			if (++putptr == items.length)
				putptr = 0;
			++count;
			notEmpty.signal();
		} finally {
			lock.unlock();
		}
	}

	public Object take() throws InterruptedException {
		lock.lock();
		try {
			while (count == 0)
				notEmpty.await();
			Object x = items[takeptr];
			if (++takeptr == items.length)
				takeptr = 0;
			--count;
			notFull.signal();
			return x;
		} finally {
			lock.unlock();
		}
	}
}




6. 使用 3 个 condition,使每个子线程各自交替执行。

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import org.junit.Test;

public class LockConditionThree {
	final int maxLoop = 100;
	
	@Test
	public void testUseCondition(){
		UseCondition useCondition = new UseCondition();
		new Thread(new Runnable(){
			@Override
			public void run() {
				for(int i = 0 ; i< maxLoop; i++){
					useCondition.sub1();
				}
			}
		}).start();

		new Thread(new Runnable(){
			@Override
			public void run() {
				for(int i = 0 ; i< maxLoop; i++){
					useCondition.sub2();
				}
			}
		}).start();
		
		new Thread(new Runnable(){
			@Override
			public void run() {
				for(int i = 0 ; i< maxLoop; i++){
					useCondition.sub3();
				}
			}
		}).start();
	
		
	}
	

	//使用 3 个 condition,使每个子线程各自交替执行。
	//=======================================================

	static class UseCondition {
		
		private Lock lock = new ReentrantLock();  
		private Condition condition1 = lock.newCondition();
		private Condition condition2 = lock.newCondition();
		private Condition condition3 = lock.newCondition();
		
		private int shouldSub = 1;
		
		public void sub1(){
			lock.lock();
			try{
				while(shouldSub != 1){
					try {
						condition1.await();
					} catch (InterruptedException e) {
						e.printStackTrace();
					}
				}
				System.out.println("sub1..");
				shouldSub = 2;
				condition2.signal(); //notify thread 2
			}finally{
				lock.unlock();
			}
		}
		
		public void sub2(){
			lock.lock();
			try{
				while(shouldSub != 2){
					try {
						condition2.await();
					} catch (InterruptedException e) {
						e.printStackTrace();
					}
				}
				System.out.println("sub2..");
				shouldSub = 3;
				condition3.signal(); //notify thread 3
			}finally{
				lock.unlock();
			}
		}
		public void sub3(){
			lock.lock();
			try{
				while(shouldSub != 3){
					try {
						condition3.await();
					} catch (InterruptedException e) {
						e.printStackTrace();
					}
				}
				System.out.println("sub3..\n");
				shouldSub = 1;
				condition1.signal(); //notify thread 1
			}finally{
				lock.unlock();
			}
		}
	}
}





7. Semaphore
Semaphore可以控制某个资源可被同时访问的个数,通过 acquire() 获取一个许可,如果没有就等待,而 release() 释放一个许可。
比如在Windows下可以设置共享文件的最大客户端访问个数。

import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Semaphore;

public class LockSemephore {

	public static void main(String[] args) {

		ExecutorService exec = Executors.newCachedThreadPool();
		final Semaphore semp = new Semaphore(5); // 同时只能5个线程使用

		for (int index = 0; index < 20; index++) { // 模拟20个客户端访问
			final int NO = index;
			exec.execute(new Runnable() {
				public void run() {
					try {
						semp.acquire();// 获取许可
						System.out.println("Accessing: " + NO);
						Thread.sleep(2000);
						semp.release();// 访问完后,释放
						System.out.println("AvailablePermits:---------" + semp.availablePermits());
					} catch (InterruptedException e) {
						e.printStackTrace();
					}
				}
			});
		}
		// 退出线程池
		exec.shutdown();
		System.out.println("done!");
	}

}










java.util.concurrent包之Execuotor系列文章

00_Java之 java.util.concurrent 包之概述

01_Java之java.util.concurrent包之Executor与ExecutorService

02_Java之 java.util.concurrent 包之ExecutorService之submit () 之 Future

03_Java之多线程之Callable与Future

04_Java之多线程之Lock






-
转载请注明,
原文出处:http://lixh1986.iteye.com/blog/2351294






引用:
http://www.journaldev.com/2377/java-lock-example-reentrantlock