杭电 hdu 1528 Card Game Cheater (二分图,最大匹配)
程序员文章站
2022-04-18 13:14:10
...
/* THE PROGRAM IS MADE BY PYY */ /*----------------------------------------------------------------------------// Copyright (c) 2011 panyanyany All rights reserved. URL : http://acm.hdu.edu.cn/showproblem.php?pid=1528 Name : 1528 Card Game Cheater Date : Saturday, August 27, 2011 Time Stage : two hours Result: 4502995 2011-08-27 16:50:52 Accepted 1528 0MS 236K 2156 B C++ pyy Test Data: Review: 一开始写得很复杂,其实只要在输入的时候把牌的面值和花色转为整数存在一个整型值 里就行了,这样比较起来方便些。 感觉这个貌似是最大匹配,貌似还是单向的?从 eve 的边集出发,向 adam 的边集前进, 如果 eve 比 adam 大则表示此路可通,否则不可通。求这种通路的最大数量。 这样感觉起来,应该是个单向的最大匹配了吧?小弟不才,对二分图理解甚少,只能这样 猜测了…… //----------------------------------------------------------------------------*/ #include <stdio.h> #include <string.h> #include <stdlib.h> #define max(a, b) (((a) > (b)) ? (a) : (b)) #define min(a, b) (((a) < (b)) ? (a) : (b)) #define FALSE 0 #define TRUE 1 #define infinity 0x0f0f0f0f #define minus_inf 0x80808080 #define MAXSIZE 27 int tcase, k ; int cover[MAXSIZE], link[MAXSIZE], adam[MAXSIZE], eve[MAXSIZE] ; int makeInt (char c) { int sign = 10, d ; if ('0' < c && c <= '9') d = c - '0' ; else if (c == 'T') d = 10 ; else if (c == 'J') d = 11 ; else if (c == 'Q') d = 12 ; else if (c == 'K') d = 13 ; else if (c == 'A') d = 14 ; else { sign = 1 ; if (c == 'C') d = 1 ; else if (c == 'D') d = 2 ; else if (c == 'S') d = 3 ; else if (c == 'H') d = 4 ; } return d * sign ; } int find (int cur) { int i, j ; for (i = 0 ; i < k ; ++i) { if (cover[i] == FALSE && eve[cur] > adam[i]) { cover[i] = TRUE ; if (link[i] == -1 || find (link[i])) { link[i] = cur ; return 1 ; } } } return 0 ; } int main () { char a, b, c ; int i, j, sum ; while (scanf ("%d", &tcase) != EOF) { while (tcase--) { scanf ("%d", &k) ; getchar () ; for (i = 0 ; i < k ; ++i) { scanf ("%c%c", &a, &b) ; getchar () ; adam[i] = makeInt (a) + makeInt (b) ; } for (i = 0 ; i < k ; ++i) { scanf ("%c%c", &a, &b) ; getchar () ; eve[i] = makeInt (a) + makeInt (b) ; } sum = 0 ; memset (link, -1, sizeof (link)) ; for (i = 0 ; i < k ; ++i) { memset (cover, 0, sizeof (cover)) ; sum += find (i) ; } printf ("%d\n", sum) ; } } return 0 ; }