PCL——(5)kd-tree实现快速领域搜索
程序员文章站
2022-04-17 17:25:12
...
#include <pcl/point_cloud.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <iostream>
#include <vector>
#include <ctime>
int main (int argc, char** argv)
{
srand (time (NULL));//用系统时间初始化随机种子
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
// Generate pointcloud data
// 随机点云生成
cloud->width=1000; //此处为点云数量
cloud->height=1; //此处表示点云为无序点云
cloud->points.resize (cloud->width * cloud->height);
// //循环填充点云数据
for (std::size_t i = 0; i < cloud->points.size (); ++i)
{
cloud->points[i].x = 1024.0f * rand () / (RAND_MAX + 1.0f);
cloud->points[i].y = 1024.0f * rand () / (RAND_MAX + 1.0f);
cloud->points[i].z = 1024.0f * rand () / (RAND_MAX + 1.0f);
}
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;//创建kdtree对象
kdtree.setInputCloud(cloud); // 设置搜索点云(空间)
pcl::PointXYZ searchPoint;//定义需要查询的点并赋随机值
searchPoint.x = 1024.0f * rand () / (RAND_MAX + 1.0f);
searchPoint.y = 1024.0f * rand () / (RAND_MAX + 1.0f);
searchPoint.z = 1024.0f * rand () / (RAND_MAX + 1.0f);
// K nearest neighbor search
int K = 10;
std::vector<int> pointIdxNKNSearch(K);//存储查询点近邻索引
std::vector<float> pointNKNSquaredDistance(K);//存储近邻点对应平方距离
std::cout << "K nearest neighbor search at (" << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z
<< ") with K=" << K << std::endl;
if ( kdtree.nearestKSearch (searchPoint, K, pointIdxNKNSearch, pointNKNSquaredDistance) > 0 )
{
//打印出所有近邻坐标
for (std::size_t i = 0; i < pointIdxNKNSearch.size (); ++i)
std::cout << " " << cloud->points[ pointIdxNKNSearch[i] ].x
<< " " << cloud->points[ pointIdxNKNSearch[i] ].y
<< " " << cloud->points[ pointIdxNKNSearch[i] ].z
<< " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
}
// Neighbors within radius search
std::vector<int> pointIdxRadiusSearch; //存储近邻索引
std::vector<float> pointRadiusSquaredDistance; //存储近邻对应的平方距离
float radius = 256.0f * rand () / (RAND_MAX + 1.0f);
std::cout << "Neighbors within radius search at (" << searchPoint.x
<< " " << searchPoint.y
<< " " << searchPoint.z
<< ") with radius=" << radius << std::endl;
if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0 )
{
for (std::size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
std::cout << " " << cloud->points[ pointIdxRadiusSearch[i] ].x
<< " " << cloud->points[ pointIdxRadiusSearch[i] ].y
<< " " << cloud->points[ pointIdxRadiusSearch[i] ].z
<< " (squared distance: " << pointRadiusSquaredDistance[i] << ")" << std::endl;
}
return 0;
}
打赏
码字不易,如果对您有帮助,就打赏一下吧O(∩_∩)O
支付宝
微信
上一篇: ubantu18.04+melodic安装gmapping
下一篇: 激光SLAM——点云初识