欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

python如何做词云

程序员文章站 2022-04-16 13:21:12
...
词云已经成为当今火热的话题,究竟如何生成词云呢?本文以python生成中文词云为例,来给大家讲解如何自己作出词云。

python如何做词云

python生成中文词云需要的两个Python类库:

jieba:中文分词分词工具

wordcloud:Python下的词云生成工具

代码组成简介

代码部分来源于其他人的博客,但是因为bug或者运行效率的原因,我对代码进行了较大的改变

代码第一部分,设置代码运行需要的大部分参数,你可以方便的直接使用该代码而不需要进行过多的修改

第二部分为jieba的一些设置,当然你也可以利用isCN参数取消中文分词

第三部分,wordcloud的设置,包括图片展示与保存

相关推荐:《python视频教程

##Use the code by comment ##
关于该程序的使用,你可以直接读注释在数分钟内学会如何使用它
# - * - coding: utf - 8 -*-
from os import path
from scipy.misc import imread
import matplotlib.pyplot as plt
import jieba
# jieba.load_userdict("txt\userdict.txt")
# 添加用户词库为主词典,原词典变为非主词典
from wordcloud import WordCloud, ImageColorGenerator
# 获取当前文件路径
# __file__ 为当前文件, 在ide中运行此行会报错,可改为
# d = path.dirname('.')
d = path.dirname(__file__)
stopwords = {}
isCN = 1 #默认启用中文分词
back_coloring_path = "img/lz1.jpg" # 设置背景图片路径
text_path = 'txt/lz.txt' #设置要分析的文本路径
font_path = 'D:\Fonts\simkai.ttf' # 为matplotlib设置中文字体路径没
stopwords_path = 'stopwords\stopwords1893.txt' # 停用词词表
imgname1 = "WordCloudDefautColors.png" # 保存的图片名字1(只按照背景图片形状)
imgname2 = "WordCloudColorsByImg.png"# 保存的图片名字2(颜色按照背景图片颜色布局生成)
my_words_list = ['路明非'] # 在结巴的词库中添加新词
back_coloring = imread(path.join(d, back_coloring_path))# 设置背景图片
# 设置词云属性
wc = WordCloud(font_path=font_path,  # 设置字体
               background_color="white",  # 背景颜色
               max_words=2000,  # 词云显示的最大词数
               mask=back_coloring,  # 设置背景图片
               max_font_size=100,  # 字体最大值
               random_state=42,
               width=1000, height=860, margin=2,# 设置图片默认的大小,但是如果使用背景图片的话,那么保存的图片大小将会按照其大小保存,margin为词语边缘距离
               )
# 添加自己的词库分词
def add_word(list):
    for items in list:
        jieba.add_word(items)
add_word(my_words_list)
text = open(path.join(d, text_path)).read()
def jiebaclearText(text):
    mywordlist = []
    seg_list = jieba.cut(text, cut_all=False)
    liststr="/ ".join(seg_list)
    f_stop = open(stopwords_path)
    try:
        f_stop_text = f_stop.read( )
        f_stop_text=unicode(f_stop_text,'utf-8')
    finally:
        f_stop.close( )
    f_stop_seg_list=f_stop_text.split('\n')
    for myword in liststr.split('/'):
        if not(myword.strip() in f_stop_seg_list) and len(myword.strip())>1:
            mywordlist.append(myword)
    return ''.join(mywordlist)
if isCN:
    text = jiebaclearText(text)
# 生成词云, 可以用generate输入全部文本(wordcloud对中文分词支持不好,建议启用中文分词),也可以我们计算好词频后使用generate_from_frequencies函数
wc.generate(text)
# wc.generate_from_frequencies(txt_freq)
# txt_freq例子为[('词a', 100),('词b', 90),('词c', 80)]
# 从背景图片生成颜色值
image_colors = ImageColorGenerator(back_coloring)
plt.figure()
# 以下代码显示图片
plt.imshow(wc)
plt.axis("off")
plt.show()
# 绘制词云
# 保存图片
wc.to_file(path.join(d, imgname1))
image_colors = ImageColorGenerator(back_coloring)
plt.imshow(wc.recolor(color_func=image_colors))
plt.axis("off")
# 绘制背景图片为颜色的图片
plt.figure()
plt.imshow(back_coloring, cmap=plt.cm.gray)
plt.axis("off")
plt.show()
# 保存图片
wc.to_file(path.join(d, imgname2))

python如何做词云

python如何做词云

python如何做词云

总结

如果你想用该代码生成英文词云,那么你需要将isCN参数设置为0,并且提供英文的停用词表。

以上就是python如何做词云的详细内容,更多请关注其它相关文章!

相关标签: python 词云