欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

机器学习mlxtend_01

程序员文章站 2022-04-15 11:05:56
运行结果: ......
# -*- coding: utf-8 -*-
"""
created on wed oct 24 09:53:29 2018

@author: user
"""

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools
from sklearn.linear_model import logisticregression
from sklearn.svm import svc
from sklearn.ensemble import randomforestclassifier
from mlxtend.classifier import ensemblevoteclassifier
from mlxtend.data import iris_data
from mlxtend.plotting import plot_decision_regions

clf1 = logisticregression(random_state = 0)
clf2 = randomforestclassifier(random_state=0)
clf3 = svc(random_state = 0, probability=true)
eclf = ensemblevoteclassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft')
x, y =iris_data()
x=x[:, [0, 2]]

gs = gridspec.gridspec(2, 2)
fig = plt.figure(figsize=(10, 8))
labels = ['logistic regression', 'random forest', 'rbf kernel svm', 'ensemble']
for clf, lab, grd in zip([clf1, clf2, clf3, eclf],
                         labels,
                         itertools.product([0, 1], repeat=2)):
    clf.fit(x, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(x=x, y=y, clf=clf, legend=2)
    plt.title(lab)
plt.show()

运行结果:

机器学习mlxtend_01