欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pytorch 基础模型组件:nn.Module、nn.Sequential、优化器类、常见的损失函数

程序员文章站 2022-03-04 13:29:27
...

Pytorch 基础模型组件:nn.Module、nn.Sequential、优化器类、常见的损失函数日萌社

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)


 

Pytorch基础模型组件

目标

  1. 知道Pytorch中Module的使用方法
  2. 知道Pytorch中优化器类的使用方法
  3. 知道Pytorch中常见的损失函数的使用方法
  4. 知道如何在GPU上运行代码
  5. 能够说出常见的优化器及其原理

1. Pytorch完成模型常用API

在前一部分,我们自己实现了通过torch的相关方法完成反向传播和参数更新,在pytorch中预设了一些更加灵活简单的对象,让我们来构造模型、定义损失,优化损失等

那么接下来,我们一起来了解一下其中常用的API

1.1 nn.Module

nn.Module 是torch.nn提供的一个类,是pytorch中我们自定义网络的一个基类,在这个类中定义了很多有用的方法,让我们在继承这个类定义网络的时候非常简单

当我们自定义网络的时候,有两个方法需要特别注意:

  1. __init__需要调用super方法,继承父类的属性和方法
  2. forward方法必须实现,用来定义我们的网络的向前计算的过程

用前面的y = wx+b的模型举例如下:

from torch import nn
class Lr(nn.Module):
    def __init__(self):
        super(Lr, self).__init__()  #继承父类init的参数
        self.linear = nn.Linear(1, 1) # 声明网络中的组件

    def forward(self, x):
        out = self.linear(x)
        return out

注意:

  1. nn.Linear为torch预定义好的线性模型,也被称为全链接层,传入的参数为输入的数量,输出的数量(in_features, out_features),是不算(batch_size的列数)
  2. nn.Module定义了__call__方法,实现的就是调用forward方法,即Lr的实例,能够直接被传入参数调用,实际上调用的是forward方法并传入参数
# 实例化模型
model = Lr()
# 传入数据,计算结果
predict = model(x)

1.2 nn.Sequential

如果模型结构比较简单,在forward函数中没有很复杂的操作。这时可以用nn.Sequential来构建模型,nn.Sequential会自动完成forward函数的创建.

In [163]: model = nn.Sequential(nn.Linear(2,64), nn.Linear(64, 1))

In [164]: x = torch.randn(10,2) # 10个样本,2个特征

In [165]: model(x)
Out[165]:
tensor([[-0.3507],
        [-0.3708],
        [-0.4118],
        [-0.2604],
        [-0.4318],
        [-0.3503],
        [-0.4953],
        [-0.5464],
        [-0.5273],
        [-0.4542]], grad_fn=<AddmmBackward>)

1.3 优化器类

优化器(optimizer),可以理解为torch为我们封装的用来进行更新参数的方法,比如常见的随机梯度下降(stochastic gradient descent,SGD)

优化器类都是由torch.optim提供的,例如

  1. torch.optim.SGD(参数,学习率)
  2. torch.optim.Adam(参数,学习率)

注意:

  1. 参数可以使用model.parameters()来获取,获取模型中所有requires_grad=True的参数
  2. 优化类的使用方法
    1. 实例化
    2. 所有参数的梯度,将其值置为0
    3. 反向传播计算梯度
    4. 更新参数值

示例如下:

optimizer = optim.SGD(model.parameters(), lr=1e-3) #1. 实例化
optimizer.zero_grad() #2. 梯度置为0
loss.backward() #3. 计算梯度
optimizer.step()  #4. 更新参数的值

1.4 损失函数

前面的例子是一个回归问题,torch中也预测了很多损失函数

  1. 均方误差:nn.MSELoss(),常用于回归问题
  2. 交叉熵损失:nn.CrossEntropyLoss(),常用于分类问题

使用方法:

model = Lr() #1. 实例化模型
criterion = nn.MSELoss() #2. 实例化损失函数
optimizer = optim.SGD(model.parameters(), lr=1e-3) #3. 实例化优化器类
for i in range(100):
    y_predict = model(x_true) #4. 向前计算预测值
    loss = criterion(y_true,y_predict) #5. 调用损失函数传入真实值和预测值,得到损失结果
    optimizer.zero_grad() #5. 当前循环参数梯度置为0
    loss.backward() #6. 计算梯度
    optimizer.step()  #7. 更新参数的值