欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

pytorch学习笔记--nn.Module、nn.Sequential的搭建模型、损失函数、反向传播和训练器

程序员文章站 2022-06-12 22:36:40
...

nn.Module、nn.Sequential的搭建模型、损失函数和训练器


nn.Module和nn.equential都是pytorch中container的方法,用于保存深度学习层信息,即容器、模型

一、nn.Module

#使用nn.Module模块构建一个LeNet
import torch
import torch.nn as nn
import torch.nn.functional as fun

class LeNet(nn.Module):
	#初始化即创建模型包含的层
	def __init__(self):
		super(LeNet, self).__init__()
		self.Conv2D1 = nn.Conv2d(in_channels=3,out_channels=6,kernel_size=5,stride=1,padding=0)
		self.activation1 = fun.sigmoid
		self.Maxpool2d1 = nn.MaxPool2d(kernel_size=2,stride=2,padding=0)
		self.Conv2D2 = nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5,stride=1,padding=0)
		self.activation2 = fun.sigmoid
		self.Maxpool2d2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
		self.flatten = nn.Flatten()
		self.linear1 = nn.Linear(in_features=400,out_features=120)
		self.activation3 = fun.sigmoid
		self.linear2 = nn.Linear(in_features=120,out_features=84)
		self.activation4 = fun.sigmoid
		self.linear3 = nn.Linear(in_features=84,out_features=10)
	#前向计算
	def forward(self,x):
		x = self.Conv2D1(x)
		x = self.activation1(x)
		x = self.Maxpool2d1(x)
		x = self.Conv2D2(x)
		x = self.activation2(x)
		x = self.Maxpool2d2(x)
		x = self.flatten(x)
		x = self.linear1(x)
		x = self.activation3(x)
		x = self.linear2(x)
		x = self.activation4(x)
		x = self.linear3(x)
		return x

if __name__ == '__main__':
	input = torch.ones((64,3,32,32))
	test = LeNet()
	output = test(input)
	print(output.shape)

输入一个batch_size 64,3通道,32*32像素的图片后
输出:

torch.Size([64, 10])

二、nn.Sequential

#使用nn.equential模块构建一个LeNet
import torch
import torch.nn as nn

LeNet = nn.Sequential(
		nn.Conv2d(in_channels=3,out_channels=6,kernel_size=5,stride=1,padding=0),
		nn.Sigmoid(),
		nn.MaxPool2d(kernel_size=2,stride=2,padding=0),
		nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5,stride=1,padding=0),
		nn.Sigmoid(),
		nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
		nn.Flatten(),
		nn.Linear(in_features=400,out_features=120),
		nn.Sigmoid(),
		nn.Linear(in_features=120,out_features=84),
		nn.Sigmoid(),
		nn.Linear(in_features=84,out_features=10),
)
if __name__ == '__main__':
	input = torch.ones((64,3,32,32),dtype=torch.float32)
	for layer in LeNet:
		input = layer(input)
		print(layer.__class__.__name__, 'output shape: \t', input.shape)

输出:

Conv2d output shape: 	 torch.Size([64, 6, 28, 28])
Sigmoid output shape: 	 torch.Size([64, 6, 28, 28])
MaxPool2d output shape: 	 torch.Size([64, 6, 14, 14])
Conv2d output shape: 	 torch.Size([64, 16, 10, 10])
Sigmoid output shape: 	 torch.Size([64, 16, 10, 10])
MaxPool2d output shape: 	 torch.Size([64, 16, 5, 5])
Flatten output shape: 	 torch.Size([64, 400])
Linear output shape: 	 torch.Size([64, 120])
Sigmoid output shape: 	 torch.Size([64, 120])
Linear output shape: 	 torch.Size([64, 84])
Sigmoid output shape: 	 torch.Size([64, 84])
Linear output shape: 	 torch.Size([64, 10])

模型.add_module(layer)可以往模型里添加层

三、损失函数、反向传播和优化器

损失函数都包含在torch.nn库中,Loss Functions官方文档

损失函数 作用
nn.L1Loss 平均绝对误差
nn.MSELoss 均方误差
nn.CrossEntropyLoss softmax和交叉熵误差的组合

常用的就是nn.CrossEntropyLoss
得到Loss之后,计算细节都保存在了loss赋值的变量中,对该变量进行loss_value.backward()即可完成反向传播,反向梯度信息都保存在了变量中。

使用优化器即可根据梯度信息而更新权重和偏置,优化器一般用SGD。torch.optim官方文档

from torch import nn,optim
from torchvision import datasets,transforms as tf
from torch.utils.data import DataLoader


#读取数据
train_datas = datasets.CIFAR10(root='./dataset',transform=tf.ToTensor(),train=True,download=True)
test_datas = datasets.CIFAR10(root='./dataset',transform=tf.ToTensor(),train=False,download=True)
train_iter = DataLoader(dataset=train_datas,batch_size=64,shuffle=True,num_workers=0,drop_last=True)

#创建模型
LeNet = nn.Sequential(
		nn.Conv2d(in_channels=3,out_channels=6,kernel_size=5,stride=1,padding=0),
		nn.Sigmoid(),
		nn.MaxPool2d(kernel_size=2,stride=2,padding=0),
		nn.Conv2d(in_channels=6,out_channels=16,kernel_size=5,stride=1,padding=0),
		nn.Sigmoid(),
		nn.MaxPool2d(kernel_size=2, stride=2, padding=0),
		nn.Flatten(),
		nn.Linear(in_features=400,out_features=120),
		nn.Sigmoid(),
		nn.Linear(in_features=120,out_features=84),
		nn.Sigmoid(),
		nn.Linear(in_features=84,out_features=10),
)

loss = nn.CrossEntropyLoss()
train_model = LeNet
optimer = optim.SGD(train_model.parameters(),lr=0.9)
for epoch in range(3):
	loss_all = 0.0
	for data in train_iter:
		img,label = data
		y_hat = train_model(img)
		l = loss(y_hat,label)
		optimer.zero_grad()
		l.backward()
		optimer.step()
		loss_all += l
	print(loss_all)

损失函数、反向传播和优化器的使用按以下步骤:
〇设置损失函数和优化器
①得出loss
②训练器保存的梯度清零
③反向传播得到梯度
④训练器step()命令进行训练
结果:损失确实在减小

tensor(1805.3182, grad_fn=<AddBackward0>)
tensor(1801.2908, grad_fn=<AddBackward0>)
tensor(1800.9563, grad_fn=<AddBackward0>)