STM32F103VET6——ADC库函数结构体
程序员文章站
2022-04-01 16:38:01
...
STM32F103VET6——ADC库函数结构体
参考 《STM32F10x-英文参考手册》
《零死角玩转STM32—F103指南者》
秉火****
F103库函数
结构体
typedef struct
{
uint32_t ADC_Mode; /*!< Configures the ADC to operate in independent or
dual mode.
This parameter can be a value of @ref ADC_mode */
FunctionalState ADC_ScanConvMode; /*!< Specifies whether the conversion is performed in
Scan (multichannels) or Single (one channel) mode.
This parameter can be set to ENABLE or DISABLE */
FunctionalState ADC_ContinuousConvMode; /*!< Specifies whether the conversion is performed in
Continuous or Single mode.
This parameter can be set to ENABLE or DISABLE. */
uint32_t ADC_ExternalTrigConv; /*!< Defines the external trigger used to start the analog
to digital conversion of regular channels. This parameter
can be a value of @ref ADC_external_trigger_sources_for_regular_channels_conversion */
uint32_t ADC_DataAlign; /*!< Specifies whether the ADC data alignment is left or right.
This parameter can be a value of @ref ADC_data_align */
uint8_t ADC_NbrOfChannel; /*!< Specifies the number of ADC channels that will be converted
using the sequencer for regular channel group.
This parameter must range from 1 to 16. */
}ADC_InitTypeDef;
ADC_mode
#define ADC_Mode_Independent ((uint32_t)0x00000000)
#define ADC_Mode_RegInjecSimult ((uint32_t)0x00010000)
#define ADC_Mode_RegSimult_AlterTrig ((uint32_t)0x00020000)
#define ADC_Mode_InjecSimult_FastInterl ((uint32_t)0x00030000)
#define ADC_Mode_InjecSimult_SlowInterl ((uint32_t)0x00040000)
#define ADC_Mode_InjecSimult ((uint32_t)0x00050000)
#define ADC_Mode_RegSimult ((uint32_t)0x00060000)
#define ADC_Mode_FastInterl ((uint32_t)0x00070000)
#define ADC_Mode_SlowInterl ((uint32_t)0x00080000)
#define ADC_Mode_AlterTrig ((uint32_t)0x00090000)
ADC_ExternalTrigConv
//ADC_external_trigger_sources_for_regular_channels_conversion
#define ADC_ExternalTrigConv_T1_CC1 ((uint32_t)0x00000000) /*!< For ADC1 and ADC2 */
#define ADC_ExternalTrigConv_T1_CC2 ((uint32_t)0x00020000) /*!< For ADC1 and ADC2 */
#define ADC_ExternalTrigConv_T2_CC2 ((uint32_t)0x00060000) /*!< For ADC1 and ADC2 */
#define ADC_ExternalTrigConv_T3_TRGO ((uint32_t)0x00080000) /*!< For ADC1 and ADC2 */
#define ADC_ExternalTrigConv_T4_CC4 ((uint32_t)0x000A0000) /*!< For ADC1 and ADC2 */
#define ADC_ExternalTrigConv_Ext_IT11_TIM8_TRGO ((uint32_t)0x000C0000) /*!< For ADC1 and ADC2 */
#define ADC_ExternalTrigConv_T1_CC3 ((uint32_t)0x00040000) /*!< For ADC1, ADC2 and ADC3 */
#define ADC_ExternalTrigConv_None ((uint32_t)0x000E0000) /*!< For ADC1, ADC2 and ADC3 */
#define ADC_ExternalTrigConv_T3_CC1 ((uint32_t)0x00000000) /*!< For ADC3 only */
#define ADC_ExternalTrigConv_T2_CC3 ((uint32_t)0x00020000) /*!< For ADC3 only */
#define ADC_ExternalTrigConv_T8_CC1 ((uint32_t)0x00060000) /*!< For ADC3 only */
#define ADC_ExternalTrigConv_T8_TRGO ((uint32_t)0x00080000) /*!< For ADC3 only */
#define ADC_ExternalTrigConv_T5_CC1 ((uint32_t)0x000A0000) /*!< For ADC3 only */
#define ADC_ExternalTrigConv_T5_CC3 ((uint32_t)0x000C0000) /*!< For ADC3 only */
ADC_data_align
#define ADC_DataAlign_Right ((uint32_t)0x00000000)
#define ADC_DataAlign_Left ((uint32_t)0x00000800)
常用库函数
/**
* @brief Initializes the ADCx peripheral according to the specified parameters
* in the ADC_InitStruct.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_InitStruct: pointer to an ADC_InitTypeDef structure that contains
* the configuration information for the specified ADC peripheral.
* @retval None
*/
void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct)
{
uint32_t tmpreg1 = 0;
uint8_t tmpreg2 = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_MODE(ADC_InitStruct->ADC_Mode));
assert_param(IS_FUNCTIONAL_STATE(ADC_InitStruct->ADC_ScanConvMode));
assert_param(IS_FUNCTIONAL_STATE(ADC_InitStruct->ADC_ContinuousConvMode));
assert_param(IS_ADC_EXT_TRIG(ADC_InitStruct->ADC_ExternalTrigConv));
assert_param(IS_ADC_DATA_ALIGN(ADC_InitStruct->ADC_DataAlign));
assert_param(IS_ADC_REGULAR_LENGTH(ADC_InitStruct->ADC_NbrOfChannel));
/*---------------------------- ADCx CR1 Configuration -----------------*/
/* Get the ADCx CR1 value */
tmpreg1 = ADCx->CR1;
/* Clear DUALMOD and SCAN bits */
tmpreg1 &= CR1_CLEAR_Mask;
/* Configure ADCx: Dual mode and scan conversion mode */
/* Set DUALMOD bits according to ADC_Mode value */
/* Set SCAN bit according to ADC_ScanConvMode value */
tmpreg1 |= (uint32_t)(ADC_InitStruct->ADC_Mode | ((uint32_t)ADC_InitStruct->ADC_ScanConvMode << 8));
/* Write to ADCx CR1 */
ADCx->CR1 = tmpreg1;
/*---------------------------- ADCx CR2 Configuration -----------------*/
/* Get the ADCx CR2 value */
tmpreg1 = ADCx->CR2;
/* Clear CONT, ALIGN and EXTSEL bits */
tmpreg1 &= CR2_CLEAR_Mask;
/* Configure ADCx: external trigger event and continuous conversion mode */
/* Set ALIGN bit according to ADC_DataAlign value */
/* Set EXTSEL bits according to ADC_ExternalTrigConv value */
/* Set CONT bit according to ADC_ContinuousConvMode value */
tmpreg1 |= (uint32_t)(ADC_InitStruct->ADC_DataAlign | ADC_InitStruct->ADC_ExternalTrigConv |
((uint32_t)ADC_InitStruct->ADC_ContinuousConvMode << 1));
/* Write to ADCx CR2 */
ADCx->CR2 = tmpreg1;
/*---------------------------- ADCx SQR1 Configuration -----------------*/
/* Get the ADCx SQR1 value */
tmpreg1 = ADCx->SQR1;
/* Clear L bits */
tmpreg1 &= SQR1_CLEAR_Mask;
/* Configure ADCx: regular channel sequence length */
/* Set L bits according to ADC_NbrOfChannel value */
tmpreg2 |= (uint8_t) (ADC_InitStruct->ADC_NbrOfChannel - (uint8_t)1);
tmpreg1 |= (uint32_t)tmpreg2 << 20;
/* Write to ADCx SQR1 */
ADCx->SQR1 = tmpreg1;
}
/**
* @brief Configures the ADC clock (ADCCLK).
* @param RCC_PCLK2: defines the ADC clock divider. This clock is derived from
* the APB2 clock (PCLK2).
* This parameter can be one of the following values:
* @arg RCC_PCLK2_Div2: ADC clock = PCLK2/2
* @arg RCC_PCLK2_Div4: ADC clock = PCLK2/4
* @arg RCC_PCLK2_Div6: ADC clock = PCLK2/6
* @arg RCC_PCLK2_Div8: ADC clock = PCLK2/8
* @retval None
*/
void RCC_ADCCLKConfig(uint32_t RCC_PCLK2)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RCC_ADCCLK(RCC_PCLK2));
tmpreg = RCC->CFGR;
/* Clear ADCPRE[1:0] bits */
tmpreg &= CFGR_ADCPRE_Reset_Mask;
/* Set ADCPRE[1:0] bits according to RCC_PCLK2 value */
tmpreg |= RCC_PCLK2;
/* Store the new value */
RCC->CFGR = tmpreg;
}
/**
* @brief Configures for the selected ADC regular channel its corresponding
* rank in the sequencer and its sample time.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param ADC_Channel: the ADC channel to configure.
* This parameter can be one of the following values:
* @arg ADC_Channel_0: ADC Channel0 selected
* @arg ADC_Channel_1: ADC Channel1 selected
* @arg ADC_Channel_2: ADC Channel2 selected
* @arg ADC_Channel_3: ADC Channel3 selected
* @arg ADC_Channel_4: ADC Channel4 selected
* @arg ADC_Channel_5: ADC Channel5 selected
* @arg ADC_Channel_6: ADC Channel6 selected
* @arg ADC_Channel_7: ADC Channel7 selected
* @arg ADC_Channel_8: ADC Channel8 selected
* @arg ADC_Channel_9: ADC Channel9 selected
* @arg ADC_Channel_10: ADC Channel10 selected
* @arg ADC_Channel_11: ADC Channel11 selected
* @arg ADC_Channel_12: ADC Channel12 selected
* @arg ADC_Channel_13: ADC Channel13 selected
* @arg ADC_Channel_14: ADC Channel14 selected
* @arg ADC_Channel_15: ADC Channel15 selected
* @arg ADC_Channel_16: ADC Channel16 selected
* @arg ADC_Channel_17: ADC Channel17 selected
* @param Rank: The rank in the regular group sequencer. This parameter must be between 1 to 16.
* @param ADC_SampleTime: The sample time value to be set for the selected channel.
* This parameter can be one of the following values:
* @arg ADC_SampleTime_1Cycles5: Sample time equal to 1.5 cycles
* @arg ADC_SampleTime_7Cycles5: Sample time equal to 7.5 cycles
* @arg ADC_SampleTime_13Cycles5: Sample time equal to 13.5 cycles
* @arg ADC_SampleTime_28Cycles5: Sample time equal to 28.5 cycles
* @arg ADC_SampleTime_41Cycles5: Sample time equal to 41.5 cycles
* @arg ADC_SampleTime_55Cycles5: Sample time equal to 55.5 cycles
* @arg ADC_SampleTime_71Cycles5: Sample time equal to 71.5 cycles
* @arg ADC_SampleTime_239Cycles5: Sample time equal to 239.5 cycles
* @retval None
*/
void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime)
{
uint32_t tmpreg1 = 0, tmpreg2 = 0;
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_ADC_CHANNEL(ADC_Channel));
assert_param(IS_ADC_REGULAR_RANK(Rank));
assert_param(IS_ADC_SAMPLE_TIME(ADC_SampleTime));
/* if ADC_Channel_10 ... ADC_Channel_17 is selected */
if (ADC_Channel > ADC_Channel_9)
{
/* Get the old register value */
tmpreg1 = ADCx->SMPR1;
/* Calculate the mask to clear */
tmpreg2 = SMPR1_SMP_Set << (3 * (ADC_Channel - 10));
/* Clear the old channel sample time */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_SampleTime << (3 * (ADC_Channel - 10));
/* Set the new channel sample time */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SMPR1 = tmpreg1;
}
else /* ADC_Channel include in ADC_Channel_[0..9] */
{
/* Get the old register value */
tmpreg1 = ADCx->SMPR2;
/* Calculate the mask to clear */
tmpreg2 = SMPR2_SMP_Set << (3 * ADC_Channel);
/* Clear the old channel sample time */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_SampleTime << (3 * ADC_Channel);
/* Set the new channel sample time */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SMPR2 = tmpreg1;
}
/* For Rank 1 to 6 */
if (Rank < 7)
{
/* Get the old register value */
tmpreg1 = ADCx->SQR3;
/* Calculate the mask to clear */
tmpreg2 = SQR3_SQ_Set << (5 * (Rank - 1));
/* Clear the old SQx bits for the selected rank */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 1));
/* Set the SQx bits for the selected rank */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SQR3 = tmpreg1;
}
/* For Rank 7 to 12 */
else if (Rank < 13)
{
/* Get the old register value */
tmpreg1 = ADCx->SQR2;
/* Calculate the mask to clear */
tmpreg2 = SQR2_SQ_Set << (5 * (Rank - 7));
/* Clear the old SQx bits for the selected rank */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 7));
/* Set the SQx bits for the selected rank */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SQR2 = tmpreg1;
}
/* For Rank 13 to 16 */
else
{
/* Get the old register value */
tmpreg1 = ADCx->SQR1;
/* Calculate the mask to clear */
tmpreg2 = SQR1_SQ_Set << (5 * (Rank - 13));
/* Clear the old SQx bits for the selected rank */
tmpreg1 &= ~tmpreg2;
/* Calculate the mask to set */
tmpreg2 = (uint32_t)ADC_Channel << (5 * (Rank - 13));
/* Set the SQx bits for the selected rank */
tmpreg1 |= tmpreg2;
/* Store the new register value */
ADCx->SQR1 = tmpreg1;
}
}
/**
* @brief Enables or disables the specified ADC peripheral.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the ADCx peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Set the ADON bit to wake up the ADC from power down mode */
ADCx->CR2 |= CR2_ADON_Set;
}
else
{
/* Disable the selected ADC peripheral */
ADCx->CR2 &= CR2_ADON_Reset;
}
}
/**
* @brief Enables or disables the selected ADC software start conversion .
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the selected ADC software start conversion.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_SoftwareStartConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC conversion on external event and start the selected
ADC conversion */
ADCx->CR2 |= CR2_EXTTRIG_SWSTART_Set;
}
else
{
/* Disable the selected ADC conversion on external event and stop the selected
ADC conversion */
ADCx->CR2 &= CR2_EXTTRIG_SWSTART_Reset;
}
}
/**
* @brief Enables or disables the ADCx conversion through external trigger.
* @param ADCx: where x can be 1, 2 or 3 to select the ADC peripheral.
* @param NewState: new state of the selected ADC external trigger start of conversion.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_ExternalTrigConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_ALL_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC conversion on external event */
ADCx->CR2 |= CR2_EXTTRIG_Set;
}
else
{
/* Disable the selected ADC conversion on external event */
ADCx->CR2 &= CR2_EXTTRIG_Reset;
}
}
/**
* @brief Enables or disables the specified ADC DMA request.
* @param ADCx: where x can be 1 or 3 to select the ADC peripheral.
* Note: ADC2 hasn't a DMA capability.
* @param NewState: new state of the selected ADC DMA transfer.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_ADC_DMA_PERIPH(ADCx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected ADC DMA request */
ADCx->CR2 |= CR2_DMA_Set;
}
else
{
/* Disable the selected ADC DMA request */
ADCx->CR2 &= CR2_DMA_Reset;
}
}