欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python 常见的排序算法实现汇总

程序员文章站 2022-03-30 18:54:09
排序分为两类,比较类排序和非比较类排序,比较类排序通过比较来决定元素间的相对次序,其时间复杂度不能突破o(nlogn);非比较类排序可以突破基于比较排序的时间下界,缺点就是一般只能用于整型相关的数据类...

python 常见的排序算法实现汇总

排序分为两类,比较类排序和非比较类排序,比较类排序通过比较来决定元素间的相对次序,其时间复杂度不能突破o(nlogn);非比较类排序可以突破基于比较排序的时间下界,缺点就是一般只能用于整型相关的数据类型,需要辅助的额外空间。

要求能够手写时间复杂度位o(nlogn)的排序算法:快速排序、归并排序、堆排序

1.冒泡排序

思想:相邻的两个数字进行比较,大的向下沉,最后一个元素是最大的。列表右边先有序。

时间复杂度$o(n^2)$,原地排序,稳定的

def bubble_sort(li:list):
  for i in range(len(li)-1):
    for j in range(i + 1, len(li)):
      if li[i] > li[j]:
        li[i], li[j] = li[j], li[i]

2.选择排序

思想:首先找到最小元素,放到排序序列的起始位置,然后再从剩余元素中继续寻找最小元素,放到已排序序列的末尾,以此类推,直到所有元素均排序完毕。列表左边先有序。

时间复杂度$o(n^2)$,原地排序,不稳定

def select_sort(nums: list):
  for i in range(len(nums) - 1):
    min_index = i
    for j in range(i + 1, len(nums)):
      if nums[j] < nums[i]:
        min_index = j
    nums[i], nums[min_index] = nums[min_index], nums[i] 

3.插入排序

思想:构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。列表左边先有序。

时间复杂度$o(n^2)$,原地排序,稳定

def insert_sort(nums: list):
  for i in range(len(nums)):
    current = nums[i]
    pre_index = i - 1
    while pre_index >= 0 and nums[pre_index] > current:
      nums[pre_index + 1] = nums[pre_index]
      pre_index -= 1
    nums[pre_index + 1] = current

4.希尔排序

思想:插入排序的改进版,又称缩小增量排序,将待排序的列表按下标的一定增量分组,每组分别进行直接插入排序,增量逐渐减小,直到为1,排序完成

时间复杂度$o(n^{1.5})$,原地排序,不稳定

def shell_sort(nums: list):
  gap = len(nums) >> 1
  while gap > 0:
    for i in range(gap, len(nums)):
      current = nums[i]
      pre_index = i - gap
      while pre_index >= 0 and nums[pre_index] > current:
        nums[pre_index + gap] = nums[pre_index]
        pre_index -= gap
      nums[pre_index + gap] = current
    gap >>= 1

5.快速排序

思想:递归,列表中取出第一个元素,作为标准,把比第一个元素小的都放在左侧,把比第一个元素大的都放在右侧,递归完成时就是排序结束的时候

时间复杂度$o(nlogn)$,空间复杂度$o(logn)$,不稳定

def quick_sort(li:list):
  if li == []:
    return []
  first = li[0]
  # 推导式实现
  left = quick_sort([l for l in li[1:] if l < first])
  right = quick_sort([r for r in li[1:] if r >= first])
  return left + [first] + right

6.归并排序

思想:分治算法,拆分成子序列,使用归并排序,将排序好的子序列合并成一个最终的排序序列。关键在于怎么合并:设定两个指针,最初位置分别为两个已经排序序列的起始位置,比较两个指针所指向的元素,选择相对小的元素放到合并空间,并将该指针移到下一位置,直到某一指针超出序列尾,将另一序列所剩下的所有元素直接复制到合并序列尾。

时间复杂度$o(nlogn)$,空间复杂度o(n),不稳定

二路归并

def merge_sort(nums: list):
  if len(nums) <= 1:
    return nums
  mid = len(nums) >> 1
  left = merge_sort(nums[:mid]) # 拆分子问题
  right = merge_sort(nums[mid:])

  def merge(left, right): # 如何归并
    res = []
    l, r = 0, 0
    while l < len(left) and r < len(right):
      if left[l] <= right[r]:
        res.append(left[l])
        l += 1
      else:
        res.append(right[r])
        r += 1
    res += left[l:]
    res += right[r:]
    return res

  return merge(left, right)

7.堆排序

思想:根节点最大,大顶堆,对应升序,根节点最小,小顶堆。

  • 构建大根堆,完全二叉树结构,初始无序
  • 最大堆调整,进行堆排序。将堆顶元素与最后一个元素交换,此时后面有序

时间复杂度$o(nlogn)$,原地排序,稳定

def heap_sort(nums: list):
  def heapify(parent_index, length, nums):
    temp = nums[parent_index] # 根节点的值
    chile_index = 2 * parent_index + 1 # 左节点,再加一为右节点
    while chile_index < length:
      if chile_index + 1 < length and nums[chile_index + 1] > nums[chile_index]:
        chile_index = chile_index + 1
      if temp > nums[chile_index]:
        break
      nums[parent_index] = nums[chile_index] # 使得根节点最大
      parent_index = chile_index
      chile_index = 2 * parent_index + 1
    nums[parent_index] = temp

  for i in range((len(nums) - 2) >> 1, -1, -1):
    heapify(i, len(nums), nums) # 1.建立大根堆
  for j in range(len(nums) - 1, 0, -1):
    nums[j], nums[0] = nums[0], nums[j]
    heapify(0, j, nums) # 2.堆排序,为升序
    
if __name__ == '__main__':
  nums = [89, 3, 3, 2, 5, 45, 33, 67] # [2, 3, 3, 5, 33, 45, 67, 89]
  heap_sort(nums)
  print(nums) 

以上就是python 常见的排序算法实现汇总的详细内容,更多关于python 排序算法的资料请关注其它相关文章!

相关标签: python 排序算法