欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

IEEE754标准的浮点数存储格式

程序员文章站 2022-03-26 22:56:36
操作系统 : CentOS7.3.1611_x64 gcc版本 :4.8.5 基本存储格式(从高到低) : Sign + Exponent + Fraction Sign : 符号位 Exponent : 阶码 Fraction : 有效数字 32位浮点数存储格式解析 Sign : 1 bit(第3 ......

操作系统 : CentOS7.3.1611_x64

gcc版本 :4.8.5

基本存储格式(从高到低) : Sign + Exponent + Fraction

Sign : 符号位

Exponent : 阶码

Fraction : 有效数字

32位浮点数存储格式解析

Sign : 1 bit(第31个bit)

Exponent :8 bits (第 30 至 23 共 8 个bits)

Fraction :23 bits (第 22 至 0 共 23 个bits)

32位非0浮点数的真值为(python语法) :

(-1) **Sign * 2 **(Exponent-127) * (1 + Fraction)

示例如下:

a = 12.5

1、求解符号位

a大于0,则 Sign 为 0 ,用二进制表示为: 0

2、求解阶码

a表示为二进制为: 1100.0

小数点需要向左移动3位,则 Exponent 为 130 (127 + 3),用二进制表示为: 10000010

3、求解有效数字

有效数字需要去掉最高位隐含的1,则有效数字的整数部分为 : 100

将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,则小数部分为: 1

后面补0,则a的二进制可表示为: 01000001010010000000000000000000

即 : 0100 0001 0100 1000 0000 0000 0000 0000

用16进制表示 : 0x41480000

4、还原真值

Sign = bin(0) = 0

Exponent = bin(10000010) = 130

Fraction = bin(0.1001) = 2 ** (-1) + 2 ** (-4) = 0.5625

真值:

(-1) **0 * 2 **(130-127) * (1 + 0.5625) = 12.5

32位浮点数二进制存储解析代码(c++):

https://github.com/mike-zhang/cppExamples/blob/master/dataTypeOpt/IEEE754Relate/floatTest1.cpp

运行效果:

[root@localhost floatTest1]# ./floatToBin1
sizeof(float) : 4
sizeof(int) : 4
a = 12.500000
showFloat : 0x 41 48 00 00
UFP : 0,82,480000
b : 0x41480000
showIEEE754 a = 12.500000
showIEEE754 varTmp = 0x00c00000
showIEEE754 c = 0x00400000
showIEEE754 i = 19 , a1 = 1.000000 , showIEEE754 c = 00480000 , showIEEE754 b = 0x41000000
showIEEE754 i = 18 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 17 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 16 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 15 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 14 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 13 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 12 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 11 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 10 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 9 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 8 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 7 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 6 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 5 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 4 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 3 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 2 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 i = 1 , a1 = 0.000000 , showIEEE754 b = 0x41000000
showIEEE754 : 0x41480000
[root@localhost floatTest1]#
64位浮点数存储格式解析

Sign : 1 bit(第31个bit)

Exponent :11 bits (第 62 至 52 共 11 个bits)

Fraction :52 bits (第 51 至 0 共 52 个bits)

64位非0浮点数的真值为(python语法) :

(-1) **Sign * 2 **(Exponent-1023) * (1 + Fraction)

示例如下:

a = 12.5

1、求解符号位

a大于0,则 Sign 为 0 ,用二进制表示为: 0

2、求解阶码

a表示为二进制为: 1100.0

小数点需要向左移动3位,则 Exponent 为 1026 (1023 + 3),用二进制表示为: 10000000010

3、求解有效数字

有效数字需要去掉最高位隐含的1,则有效数字的整数部分为 : 100

将十进制的小数转换为二进制的小数的方法为将小数*2,取整数部分,则小数部分为: 1

后面补0,则a的二进制可表示为:

0100000000101001000000000000000000000000000000000000000000000000

即 : 0100 0000 0010 1001 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

用16进制表示 : 0x4029000000000000

4、还原真值

Sign = bin(0) = 0
Exponent = bin(10000000010) = 1026
Fraction = bin(0.1001) = 2 ** (-1) + 2 ** (-4) = 0.5625

真值:

(-1) **0 * 2 **(1026-1023) * (1 + 0.5625) = 12.5

64位浮点数二进制存储解析代码(c++):

https://github.com/mike-zhang/cppExamples/blob/master/dataTypeOpt/IEEE754Relate/doubleTest1.cpp

运行效果:

[root@localhost t1]# ./doubleToBin1
sizeof(double) : 8
sizeof(long) : 8
a = 12.500000
showDouble : 0x 40 29 00 00 00 00 00 00
UFP : 0,402,0
b : 0x0
showIEEE754 a = 12.500000
showIEEE754 logLen = 3
showIEEE754 c = 4620693217682128896(0x4020000000000000)
showIEEE754 b = 0x4020000000000000
showIEEE754 varTmp = 0x8000000000000
showIEEE754 c = 0x8000000000000
showIEEE754 i = 48 , a1 = 1.000000 , showIEEE754 c = 9000000000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 47 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 46 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 45 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 44 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 43 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 42 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 41 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 40 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 39 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 38 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 37 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 36 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 35 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 34 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 33 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 32 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 31 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 30 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 29 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 28 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 27 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 26 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 25 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 24 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 23 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 22 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 21 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 20 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 19 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 18 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 17 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 16 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 15 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 14 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 13 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 12 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 11 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 10 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 9 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 8 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 7 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 6 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 5 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 4 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 3 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 2 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 i = 1 , a1 = 0.000000 , showIEEE754 b = 0x4020000000000000
showIEEE754 : 0x4029000000000000
[root@localhost t1]#

 

好,就这些了,希望对你有帮助。

本文github地址:

https://github.com/mike-zhang/mikeBlogEssays/blob/master/2018/20180117_IEEE754标准的浮点数存储格式.rst

欢迎补充