欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python 图像处理之颜色迁移(reinhard VS welsh)

程序员文章站 2022-03-25 23:17:10
目录前言应用场景出发点reinhard算法流程welsh算法流程reinhard vs welsh代码实现reinhardwelsh代码效果对比前言reinhard算法:color transfer...

前言

reinhard算法:color transfer between images,作者erik reinhard

welsh算法:transferring color to greyscale images,作者tomihisa welsh

应用场景

人像图换肤色,风景图颜色迁移

出发点

  1. rgb三通道有很强的关联性,而做颜色的改变同时恰当地改变三通道比较困难。
  2. 需要寻找三通道互不相关的也就是正交的颜色空间,作者想到了ruderman等人提出的lαβ颜色空间。三个轴向正交意味着改变任何一个通道都不影响其他通道,从而能够较好的保持原图的自然效果。三个通道分别代表:亮度,黄蓝通道,红绿通道。

reinhard算法流程

  1. 输入变换图,颜色参考图,将其都从bgr空间转化为lab空间
  2. 分别计算变换图,参考图在lab空间的均值,方差
  3. (变换图lab - 变换图均值)/变换图方差 *参考图方差 + 参考图均值
  4. 变换图lab空间转化为bgr空间,输出结果

welsh算法流程

  1. 输入变换图,颜色参考图,将其都从bgr空间转化为lab空间
  2. 定义随机参考点个数segment,领域空间大小window_size,加权系数ratio。从参考图片中随机选择segment个样本点,将这些样本点的像素亮度值l和l空间window_size领域内得方差σ保存起来,求这2个的加权w,w = l* ratio+ σ*(1-ratio)。这样就可以得到segment个w,以及与其一一对应的a通道,b通道对应位置的数值。
  3. 对变换图的l通道基于颜色参考图的l通道进行亮度重映射,保证后续的像素匹配正确进行
  4. 对变换图进行逐像素扫描,对每个像素,计算其权值w,计算方式和上面一样。然后在第二步得到的样本点中找到与其权值最接近的参考点,并将该点的a通道和b通道的值赋给变换图的a通道和b通道。
  5. 将变换图从lab空间转化到bgr空间。

reinhard vs welsh

  1. reinhard 操作简单,高效,速度快很多。
  2. welsh算法涉及到了参考图的w的计算,如果是参考图固定且已知的场景,这一步可以放入初始化中。如果不是这样的场景,那么这一步的计算也是很费时的。
  3. welsh整体速度慢很多,主要由于求方差造成。
  4. welsh的输出效果,受随机参考点个数以及位置的影响,每次的结果都会有差异。
  5. welsh的效果会有种涂抹不均匀的感觉,reinhard 则没有这种问题。

代码实现

reinhard

def color_trans_reinhard(in_img, ref_img, in_mask_lists=[none], ref_mask_lists=[none]):
    ref_img_lab = cv2.cvtcolor(ref_img, cv2.color_bgr2lab)
    in_img_lab = cv2.cvtcolor(in_img, cv2.color_bgr2lab)
 
    in_avg = np.ones(in_img.shape, np.float32)
    in_std = np.ones(in_img.shape, np.float32)
    ref_avg = np.ones(in_img.shape, np.float32)
    ref_std = np.ones(in_img.shape, np.float32)
 
    mask_all = np.zeros(in_img.shape, np.float32)
    for in_mask, ref_mask in zip(in_mask_lists, ref_mask_lists):
        #mask,取值为 0, 255, shape[height,width]
        in_avg_tmp, in_std_tmp = cv2.meanstddev(in_img_lab, mask=in_mask)
        np.copyto(in_avg, in_avg_tmp.reshape(1,1,-1), where=np.expand_dims(in_mask,2)!=0) #numpy.copyto(destination, source)
        np.copyto(in_std, in_std_tmp.reshape(1,1,-1), where=np.expand_dims(in_mask,2)!=0) 
 
        ref_avg_tmp, ref_std_tmp = cv2.meanstddev(ref_img_lab, mask=ref_mask)
        np.copyto(ref_avg, ref_avg_tmp.reshape(1,1,-1), where=np.expand_dims(in_mask,2)!=0) #numpy.copyto(destination, source)
        np.copyto(ref_std, ref_std_tmp.reshape(1,1,-1), where=np.expand_dims(in_mask,2)!=0) 
 
        #mask
        mask_all[in_mask!=0] = 1
 
    in_std[in_std==0] =1 #避免除数为0的情况
    transfered_lab = (in_img_lab - in_avg)/(in_std) *ref_std + ref_avg 
    transfered_lab[transfered_lab<0] = 0
    transfered_lab[transfered_lab>255] = 255
 
    out_img = cv2.cvtcolor(transfered_lab.astype(np.uint8), cv2.color_lab2bgr)
 
    if in_mask_lists[0] is not none and ref_mask_lists[0] is not none:
        np.copyto(out_img, in_img, where=mask_all==0) 
        
    return out_img
 
 
"""
#img1 = cv2.imread("imgs/1.png")
#img2 = cv2.imread("imgs/2.png")
#img1 = cv2.imread("welsh22/1.png", 1)
#img2 = cv2.imread("welsh22/2.png", 1)
img1 = cv2.imread("welsh22/gray.jpg", 1)
img2 = cv2.imread("welsh22/consult.jpg", 1)
cv2.imwrite("out.jpg", color_trans_reinhard(img1, img2, [np.ones(img1.shape[:-1],np.uint8)*255], [np.ones(img2.shape[:-1],np.uint8)*255]))
"""
img1 = cv2.imread("ab.jpeg")
img2 = cv2.imread("hsy.jpeg")
mask1 = cv2.imread("ab_parsing.jpg", 0)
mask1[mask1<128]=0
mask1[mask1>=128]=255
mask2 = cv2.imread("hsy_parsing.jpg", 0)
mask2[mask2<128]=0
mask2[mask2>=128]=255
cv2.imwrite("out.jpg", color_trans_reinhard(img1, img2, [mask1], [mask2]))

welsh代码

改进点

  1. 主要是去掉for循环操作。
  2. 将计算一个领域内的std,使用均值滤波+numpy实现近似替换。差别目测看不出。
  3. 修改参考图的weight,全部int化,只保留不一样的weight,实际测试大概150个左右的weight就可以。
  4. 修改最近weight查找思路,使用numpy减法操作+argmin,替换2分查找。
  5. 整体速度比原始代码快18倍。
def get_domain_std(img_l, pixel, height, width, window_size):
    window_left = max(pixel[1] - window_size, 0)
    window_right = min(pixel[1] + window_size + 1, width)
    window_top = max(pixel[0] - window_size, 0)
    window_bottom = min(pixel[0] + window_size + 1, height)
 
    window_slice = img_l[window_top: window_bottom, window_left: window_right]
 
    return np.std(window_slice)
 
 
def get_weight_pixel(ref_img_l, ref_img_a, ref_img_b, ref_img_height, ref_img_width, segment, window_size, ratio, ref_mask_lists=[none]):
    weight_list = []
    pixel_a_list = []
    pixel_b_list = []
 
    ref_img_mask  = np.ones((ref_img_height, ref_img_width), np.uint8)
    if ref_mask_lists[0] is not none:
        for x in ref_mask_lists:
            ref_img_mask = np.bitwise_or(x, ref_img_mask)
 
    ref_img_l_mean = cv2.blur(ref_img_l, (window_size, window_size))
    ref_img_l_std = np.sqrt(cv2.blur(np.power((ref_img_l - ref_img_l_mean), 2),  (window_size, window_size)))
    for _ in range(segment):
        height_index = np.random.randint(ref_img_height)
        width_index = np.random.randint(ref_img_width)
 
            
        pixel = [height_index, width_index]  #[x,y]
 
        if ref_img_mask[pixel[0], pixel[1]] == 0:
            continue
 
        pixel_light = ref_img_l[pixel[0], pixel[1]]
        pixel_a = ref_img_a[pixel[0], pixel[1]]
        pixel_b = ref_img_b[pixel[0], pixel[1]]
 
        #pixel_std = get_domain_std(ref_img_l, pixel, ref_img_height, ref_img_width, window_size)
        pixel_std = ref_img_l_std[height_index, width_index]
 
        weight_value = int(pixel_light * ratio + pixel_std * (1 - ratio))
        if weight_value not in weight_list:
            weight_list.append(weight_value)
            pixel_a_list.append(pixel_a)
            pixel_b_list.append(pixel_b)                          
 
    return np.array(weight_list), np.array(pixel_a_list), np.array(pixel_b_list)
 
 
 
def color_trans_welsh(in_img, ref_img, in_mask_lists=[none], ref_mask_lists=[none]):
    start = time.time()
    #参考图
    ref_img_height, ref_img_width, ref_img_channel = ref_img.shape
    window_size=5 #窗口大小
    segment= 10000#随机点个数
    ratio=0.5     #求weight的比例系数
 
    ref_img_lab = cv2.cvtcolor(ref_img, cv2.color_bgr2lab)
    ref_img_l, ref_img_a, ref_img_b = cv2.split(ref_img_lab)
 
    #计算参考图weight
    ref_img_weight_array, ref_img_pixel_a_array, ref_img_pixel_b_array =  get_weight_pixel(ref_img_l, ref_img_a, ref_img_b, ref_img_height, ref_img_width, segment, window_size, ratio, ref_mask_lists)
 
    ref_img_max_pixel, ref_img_min_pixel = np.max(ref_img_l), np.min(ref_img_l)
 
 
    #输入图
    in_img_height, in_img_width, in_img_channel = in_img.shape
    in_img_lab = cv2.cvtcolor(in_img, cv2.color_bgr2lab)
 
    # 获取灰度图像的亮度信息;
    in_img_l, in_img_a, in_img_b = cv2.split(in_img_lab)
 
    in_img_max_pixel, in_img_min_pixel = np.max(in_img_l), np.min(in_img_l)
    pixel_ratio = (ref_img_max_pixel - ref_img_min_pixel) / (in_img_max_pixel - in_img_min_pixel)
 
    # 把输入图像的亮度值映射到参考图像范围内;
    in_img_l = ref_img_min_pixel + (in_img_l - in_img_min_pixel) * pixel_ratio
    in_img_l = in_img_l.astype(np.uint8)
 
 
    in_img_l_mean = cv2.blur(in_img_l, (window_size, window_size))
    in_img_l_std = np.sqrt(cv2.blur(np.power((in_img_l - in_img_l_mean), 2),  (window_size, window_size)))
 
 
    in_img_weight_pixel = ratio * in_img_l + (1 - ratio) * in_img_l_std
 
    nearest_pixel_index = np.argmin(np.abs(ref_img_weight_array.reshape(1,1,-1) - np.expand_dims(in_img_weight_pixel, 2)), axis=2).astype(np.float32)
 
    in_img_a = cv2.remap(ref_img_pixel_a_array.reshape(1, -1), nearest_pixel_index, np.zeros_like(nearest_pixel_index, np.float32), interpolation=cv2.inter_linear)
    in_img_b = cv2.remap(ref_img_pixel_b_array.reshape(1, -1), nearest_pixel_index, np.zeros_like(nearest_pixel_index, np.float32), interpolation=cv2.inter_linear)
 
 
    merge_img = cv2.merge([in_img_l, in_img_a, in_img_b])
    bgr_img = cv2.cvtcolor(merge_img, cv2.color_lab2bgr)
 
    
    mask_all = np.zeros(in_img.shape[:-1], np.int32)
    if in_mask_lists[0] is not none and ref_mask_lists[0] is not none:
        for x in in_mask_lists:
            mask_all = np.bitwise_or(x, mask_all)
        mask_all = cv2.merge([mask_all, mask_all, mask_all])
        np.copyto(bgr_img, in_img, where=mask_all==0) 
    
    end = time.time()
    print("time", end-start)
    return bgr_img
 
 
 
if __name__ == '__main__':
 
    # 创建参考图像的分析类;
    #ref_img = cv2.imread("consult.jpg")
    #ref_img = cv2.imread("2.png")
    ref_img = cv2.imread("../imgs/2.png")
 
    # 读取灰度图像;opencv默认读取的是3通道的,不需要我们扩展通道;
    #in_img = cv2.imread("gray.jpg")
    #in_img = cv2.imread("1.png")
    in_img = cv2.imread("../imgs/1.png")
 
    bgr_img = color_trans_welsh(in_img, ref_img)
    cv2.imwrite("out_ren.jpg", bgr_img)
    """
    ref_img = cv2.imread("../hsy.jpeg")
    ref_mask = cv2.imread("../hsy_parsing.jpg", 0)
    ref_mask[ref_mask<128] = 0
    ref_mask[ref_mask>=128] = 255
    in_img = cv2.imread("../ab.jpeg")
    in_mask = cv2.imread("../ab_parsing.jpg", 0)
    in_mask[in_mask<128] = 0
    in_mask[in_mask>=128] = 255
    bgr_img = color_trans_welsh(in_img, ref_img, in_mask_lists=[in_mask], ref_mask_lists=[ref_mask])
    cv2.imwrite("bgr.jpg", bgr_img)
    """

效果对比

从左到右,分别为原图,参考图,reinhard效果,welsh效果 

Python 图像处理之颜色迁移(reinhard VS welsh)

Python 图像处理之颜色迁移(reinhard VS welsh)

Python 图像处理之颜色迁移(reinhard VS welsh)

 从左到右,分别为原图,原图皮肤mask,参考图,参考图皮肤mask,reinhard效果,welsh效果  

Python 图像处理之颜色迁移(reinhard VS welsh)

以上就是python 图像处理之颜色迁移(reinhard vs welsh)的详细内容,更多关于python 颜色迁移的资料请关注其它相关文章!