opencv_python FLANN近邻匹配笔记
程序员文章站
2022-03-25 20:37:09
...
opencv_python FLANN近邻匹配笔记
FLANN邻近搜索
FLANN库全称是Fast Library for Approximate Nearest Neighbors,它是目前最完整的(近似)最近邻开源库。不但实现了一系列查找算法,还包含了一种自动选取最快算法的机制。
使用FLANN的搜索,整体来说分为两步,一是建立索引,二是搜索。
代码实现:
import cv2
import numpy as np
from matplotlib import pyplot as plt
def FLANN():
queryImage = cv2.imread('img/left_01.png', 0)
trainingImage = cv2.imread('img/right_01.png', 0)
# 创建SIFT检测和计算
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(queryImage, None)
kp2, des2 = sift.detectAndCompute(trainingImage, None)
# FLANN匹配参数,定义FLANN匹配器,使用KNN算法实现匹配
# 这里使用FLANN_INDEX_KDTREE,5kd-trees和50 checks迭代
FLANN_INDEX_KDTREE = 1
indexParams = dict(algorithm=1, trees=5)
searchParams = dict(check=100)
flann = cv2.FlannBasedMatcher(indexParams, searchParams)
matches = flann.knnMatch(des1, des2, k=2)
# 根据matches生成相同长度的matchesMask列表,列表元素为[0, 0]
matchesMask = [[0, 0] for i in range(len(matches))]
# 去除错误匹配
# 比值检测认为第一个匹配和第二个匹配的比值小于一个给定的值(一般是0.5)
for i, (m, n) in enumerate(matches):
if m.distance < 0.5*n.distance:
matchesMask[i] = [1, 0]
# 将图像显示
# mathColor是两图的匹配连接线,连接线与matchesMask相关
# singlePointColor是勾画关键点
drawParams = dict(matchColor=(0, 255, 0),
singlePointColor=(255, 0, 0),
matchesMask=matchesMask,
flags=0)
resultImage = cv2.drawMatchesKnn(queryImage, kp1, trainingImage, kp2, matches,
None, **drawParams)
return resultImage
if __name__ == '__main__':
resultImage = FLANN()
plt.imshow(resultImage)
plt.show()
单应性变换(Homography)
单应性是一个条件,该条件表明当两幅图像中的一副出现投影畸变时,它们还能彼此匹配。
一个平面到另一个平面的映射关系。
两张图分别有四个相对位置相同的点,Homography就是一个变换(3*3矩阵),将一张图中的点映射到另一张图中对应的点。
RANSAC
随机一致性采样RANSAC是一种鲁棒的模型拟合算法,能够从有外点的数据中拟合准确的模型。
代码实现:
import cv2
import numpy as np
from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
queryImage = cv2.imread('img/box.png', 0)
trainingImage = cv2.imread('img/box_in_scene.png', 0)
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(queryImage, None)
kp2, des2 = sift.detectAndCompute(trainingImage, None)
FLANN_INDEX_KDTREE = 1
indexParams = dict(algorithm=1, trees=5)
searchParams = dict(check=100)
flann = cv2.FlannBasedMatcher(indexParams, searchParams)
matches = flann.knnMatch(des1, des2, k=2)
good = []
for m, n in matches:
if m.distance < 0.5*n.distance:
good.append(m)
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
matchesMask = mask.ravel().tolist()
h, w = queryImage.shape
pts = np.float32([[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]).reshape(-1, 1, 2)
dst = cv2.perspectiveTransform(pts, M)
trainingImage = cv2.polylines(trainingImage, [np.int32(dst)], True, 255, 3, cv2.LINE_AA)
else:
print("Not enough matches are found %d/%d" % (len(good), MIN_MATCH_COUNT))
matchesMask = None
draw_params = dict(matchColor=(0, 255, 0), singlePointColor=None, matchesMask=matchesMask, flags=2)
img3 = cv2.drawMatches(queryImage, kp1, trainingImage, kp2, good, None, **draw_params)
plt.imshow(img3, 'gray'), plt.show()
参考文章:
https://www.jianshu.com/p/57fc7068cfee
上一篇: 计算机视觉之OpenCV图像的基础操作
下一篇: 虚拟机用校园网不能上网问题