欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python深度学习pyTorch权重衰减与L2范数正则化解析

程序员文章站 2022-03-25 13:37:50
下面进行一个高维线性实验假设我们的真实方程是:假设feature数200,训练样本和测试样本各20个模拟数据集num_train,num_test = 10,10num_features = 200t...

Python深度学习pyTorch权重衰减与L2范数正则化解析

下面进行一个高维线性实验

假设我们的真实方程是:

Python深度学习pyTorch权重衰减与L2范数正则化解析

假设feature数200,训练样本和测试样本各20个

模拟数据集

num_train,num_test = 10,10
num_features = 200
true_w = torch.ones((num_features,1),dtype=torch.float32) * 0.01
true_b = torch.tensor(0.5)
samples = torch.normal(0,1,(num_train+num_test,num_features))
noise = torch.normal(0,0.01,(num_train+num_test,1))
labels = samples.matmul(true_w) + true_b + noise
train_samples, train_labels= samples[:num_train],labels[:num_train]
test_samples, test_labels = samples[num_train:],labels[num_train:]

定义带正则项的loss function

def loss_function(predict,label,w,lambd):
    loss = (predict - label) ** 2
    loss = loss.mean() + lambd * (w**2).mean()
    return loss

画图的方法

def semilogy(x_val,y_val,x_label,y_label,x2_val,y2_val,legend):
    plt.figure(figsize=(3,3))
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.semilogy(x_val,y_val)
    if x2_val and y2_val:
        plt.semilogy(x2_val,y2_val)
        plt.legend(legend)
    plt.show()

拟合和画图

def fit_and_plot(train_samples,train_labels,test_samples,test_labels,num_epoch,lambd):
    w = torch.normal(0,1,(train_samples.shape[-1],1),requires_grad=true)
    b = torch.tensor(0.,requires_grad=true)
    optimizer = torch.optim.adam([w,b],lr=0.05)
    train_loss = []
    test_loss = []
    for epoch in range(num_epoch):
        predict = train_samples.matmul(w) + b
        epoch_train_loss = loss_function(predict,train_labels,w,lambd)
        optimizer.zero_grad()
        epoch_train_loss.backward()
        optimizer.step()
        test_predict = test_sapmles.matmul(w) + b
        epoch_test_loss = loss_function(test_predict,test_labels,w,lambd)
        train_loss.append(epoch_train_loss.item())
        test_loss.append(epoch_test_loss.item())
    semilogy(range(1,num_epoch+1),train_loss,'epoch','loss',range(1,num_epoch+1),test_loss,['train','test'])

Python深度学习pyTorch权重衰减与L2范数正则化解析
可以发现加了正则项的模型,在测试集上的loss确实下降了

以上就是python深度学习pytorch权重衰减与l2范数正则化解析的详细内容,更多关于python pytorch权重与l2范数正则化的资料请关注其它相关文章!