欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

How far away ? HDU - 2586

程序员文章站 2022-03-23 14:00:45
...

There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.

Input

First line is a single integer T(T<=10), indicating the number of test cases. 
  For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n. 
  Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.

Output

For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.

Sample Input

2
3 2
1 2 10
3 1 15
1 2
2 3

2 2
1 2 100
1 2
2 1

Sample Output

10
25
100
100

题意:给你一个无向图,有m次查询,查询点x与点y之间的最短距离。

思路:LCA模板题,dis[x]表示x到根节点的最短距离,那么点x与点y之间的最短距离=dis[x]+dis[y]-2*dis[lca(x,y)];

#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=40009;
int head[maxn],cnt,dis[maxn],dep[maxn],f[maxn][30],n,m;
struct node{
	int id;
	int val;
	int next;
}side[maxn*2];
void add(int x,int y,int d)
{
	side[cnt].id=y;
	side[cnt].val=d;
	side[cnt].next=head[x];
	head[x]=cnt++;
}
void dfs(int x,int fa)
{
	for(int i=head[x];i!=-1;i=side[i].next)
	{
		int y=side[i].id;
		if(y==fa) continue;
		f[y][0]=x;
		dis[y]=dis[x]+side[i].val;
		dep[y]=dep[x]+1;
		dfs(y,x);
	}
}
void init()
{
	memset(head,-1,sizeof(head));
	memset(dep,0,sizeof(dep));
	memset(f,0,sizeof(f));
	dis[1]=0;
	cnt=0;
}
void need()
{
	for(int j=1;(1<<j)<=n;j++)
		for(int i=1;i<=n;i++)
			f[i][j]=f[f[i][j-1]][j-1];
}
int lca(int a,int b)
{
	if(dep[a]>dep[b])
		swap(a,b);
	int ff=dep[b]-dep[a];
	for(int i=0;(1<<i)<=ff;i++)
		if((1<<i)&ff)
			b=f[b][i];
	if(a!=b)
	{
		for(int i=(int)(log2(n));i>=0;i--)
		if(f[a][i]!=f[b][i])
		{
			a=f[a][i];
			b=f[b][i];
		}
		a=f[a][0];
	}
	return a;
}
int main()
{
	int t,x,y,z;
	scanf("%d",&t);
	while(t--)
	{
		init();
		scanf("%d%d",&n,&m);
		for(int i=1;i<n;i++)
		{
			scanf("%d%d%d",&x,&y,&z);
			add(x,y,z);
			add(y,x,z); 
		}
		dfs(1,-1);
		need();
		for(int i=1;i<=m;i++)
		{
			scanf("%d%d",&x,&y);
			int ff=lca(x,y);
		//	printf("%d**%d**%d\n",dis[x],dis[y],ff);
			int ans=dis[x]+dis[y]-2*dis[ff];
			printf("%d\n",ans);
		}
	}
	return 0;
}