DP_Sumsets
farmer john commanded his cows to search for different sets of numbers that sum to a given number. the cows use only numbers that are an integer power of 2. here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
help fj count all possible representations for a given integer n (1 <= n
<= 1,000,000).
input
a single line with a single integer, n.
output
the number of ways to represent n as the indicated sum. due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
sample input
7
sample output
6
题意:整数n用2^n之和的形式表示的方案数
思路:当n>1时,若n为奇数,则每个分解方案中至少含有一个1项。此时若每种分解方案中去掉一个1项,方案数不发生改变。
即 n分解的方案数=(n-1)分解的方案数
若该n为偶数,则分为两类情况:
1、含有1项,同上,每个方案中去掉1项,方案数不变。
2、不含有1项,此时每个方案中最小项应为2,若将每一项除2,方案数不变。
即 n分解的方案数=(n-1)分解的方案数+(n/2)分解的方案数。
边界条件:当n=1时只有一种分解方案。
注意:可能溢出,需要取模
1 #include<cstdio> 2 int s[1000005]; 3 int main() 4 { 5 int n; 6 7 s[1]=1; 8 for( int i=2; i<=1000000; i++){ 9 if( i%2==0 ) 10 s[i]=(s[i-1]+s[i/2])%1000000000; 11 else 12 s[i]=s[i-1]; 13 } 14 while(~scanf("%d",&n)){ 15 printf("%d\n",s[n]); 16 } 17 18 return 0; 19 }
推荐阅读