BZOJ3527: [Zjoi2014]力(FFT)
程序员文章站
2022-03-20 19:56:46
题意 "题目链接" Sol 直接把$q_i$除掉 那么$E_j = \sum_{i = 1}^{j 1} q_i (i j)^2 \sum_{i = j + 1}^n q_i (i j)^2$ 设$f_i = q_i, g_i = i^2$ 带入原式发现原式变成了卷积的形式 $E_j = f_i g ......
题意
sol
直接把\(q_i\)除掉
那么\(e_j = \sum_{i = 1}^{j - 1} q_i (i - j)^2 - \sum_{i = j + 1}^n q_i (i - j)^2\)
设\(f_i = q_i, g_i = i^2\)
带入原式发现原式变成了卷积的形式
\(e_j = f_i g_{i - j}\)
然后像\(bzoj2194\)那样把\(g\)给翻转掉,就成了标准卷积形式
fft一波
// luogu-judger-enable-o2 #include<bits/stdc++.h> const double pi = acos(-1); using namespace std; const int maxn = 1e6 + 10; int n, m, r[maxn]; struct com { double x, y; com(double xx = 0, double yy = 0) {x = xx; y = yy;} com operator + (com &rhs) { return com(x + rhs.x, y + rhs.y); } com operator - (com &rhs) { return com(x - rhs.x, y - rhs.y); } com operator * (com &rhs) { return com(x * rhs.x - y * rhs.y, x * rhs.y + y * rhs.x); } }a[maxn], b[maxn], c[maxn]; void fft(com *a, int n, int type) { for(int i = 0; i < n; i++) if(i < r[i]) swap(a[i], a[r[i]]); for(int mid = 1; mid < n; mid <<= 1) { com wn(cos(pi / mid), type * sin(pi / mid)); for(int r = mid << 1, j = 0; j < n; j += r) {//这里要写<n com w(1, 0); for(int k = 0; k < mid; k++, w = w * wn) { com x = a[j + k], y = w * a[j + k + mid]; a[j + k] = x + y; a[j + k + mid] = x - y; } } } if(type == -1) { for(int i = 0; i <= n; i++) a[i].x /= n; } } int mul(com *c, com *a, com *b, int n, int m) { int ret = 1, l = 0; while(ret <= n + m) ret <<= 1, l++; for(int i = 0; i < ret; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << l - 1); fft(a, ret, 1); fft(b, ret, 1); for(int i = 0; i <= ret; i++) c[i] = a[i] * b[i]; fft(c, ret, -1); return ret; } int main() { scanf("%d", &n); n -= 1; for(int i = 0; i <= n; i++) scanf("%lf", &a[i].x); for(int i = 0; i < n; i++) b[i].x = -1.0 / (double)(n - i) / (double)(n - i); for(int i = n + 1; i <= 2 * n; i++) b[i].x = -b[2 * n - i].x; mul(c, a, b, n, 2 * n); for(int i = n; i <= n * 2; i++) printf("%.5lf\n", c[i].x); return 0; }