欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

运动跟踪(五):Kalman滤波

程序员文章站 2024-03-25 22:14:58
...


class CV_EXPORTS_W KalmanFilter
{
public:
    //! the default constructor
    CV_WRAP KalmanFilter();
    //! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
    CV_WRAP KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
    //! re-initializes Kalman filter. The previous content is destroyed.
    void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);

    //! computes predicted state
    CV_WRAP const Mat& predict(const Mat& control=Mat());
    //! updates the predicted state from the measurement
    CV_WRAP const Mat& correct(const Mat& measurement);

    Mat statePre;           //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
    Mat statePost;          //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
    Mat transitionMatrix;   //!< state transition matrix (A)
    Mat controlMatrix;      //!< control matrix (B) (not used if there is no control)
    Mat measurementMatrix;  //!< measurement matrix (H)
    Mat processNoiseCov;    //!< process noise covariance matrix (Q)
    Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
    Mat errorCovPre;        //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
    Mat gain;               //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
    Mat errorCovPost;       //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)

    // temporary matrices
    Mat temp1;
    Mat temp2;
    Mat temp3;
    Mat temp4;
    Mat temp5;
};
(1)KalmanFilter示例
// KalmanFilter.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"

#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <stdio.h>

using namespace cv;

static inline Point calcPoint(Point2f center, double R, double angle)
{
	return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
}

static void help()
{
	printf( "\nExamle of c calls to OpenCV's Kalman filter.\n"
		"   Tracking of rotating point.\n"
		"   Rotation speed is constant.\n"
		"   Both state and measurements vectors are 1D (a point angle),\n"
		"   Measurement is the real point angle + gaussian noise.\n"
		"   The real and the estimated points are connected with yellow line segment,\n"
		"   the real and the measured points are connected with red line segment.\n"
		"   (if Kalman filter works correctly,\n"
		"    the yellow segment should be shorter than the red one).\n"
		"\n"
		"   Pressing any key (except ESC) will reset the tracking with a different speed.\n"
		"   Pressing ESC will stop the program.\n"
		);
}

int main(int, char**)
{
	help();
	Mat img(500, 500, CV_8UC3);
	KalmanFilter KF(2, 1, 0);
	Mat state(2, 1, CV_32F); /* (phi, delta_phi) */
	Mat processNoise(2, 1, CV_32F);
	Mat measurement = Mat::zeros(1, 1, CV_32F);
	char code = (char)-1;

	for(;;)
	{
		randn( state, Scalar::all(0), Scalar::all(0.1) );
		KF.transitionMatrix = *(Mat_<float>(2, 2) << 1, 1, 0, 1);

		setIdentity(KF.measurementMatrix);
		setIdentity(KF.processNoiseCov, Scalar::all(1e-5));
		setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
		setIdentity(KF.errorCovPost, Scalar::all(1));

		randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));

		for(;;)
		{
			Point2f center(img.cols*0.5f, img.rows*0.5f);
			float R = img.cols/3.f;
			double stateAngle = state.at<float>(0);
			Point statePt = calcPoint(center, R, stateAngle);

			Mat prediction = KF.predict();
			double predictAngle = prediction.at<float>(0);
			Point predictPt = calcPoint(center, R, predictAngle);

			randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));

			// generate measurement
			measurement += KF.measurementMatrix*state;

			double measAngle = measurement.at<float>(0);
			Point measPt = calcPoint(center, R, measAngle);

			// plot points
#define drawCross( center, color, d )                                 \
	line( img, Point( center.x - d, center.y - d ),                \
	Point( center.x + d, center.y + d ), color, 1, CV_AA, 0); \
	line( img, Point( center.x + d, center.y - d ),                \
	Point( center.x - d, center.y + d ), color, 1, CV_AA, 0 )

			img = Scalar::all(0);
			drawCross( statePt, Scalar(255,255,255), 3 );
			drawCross( measPt, Scalar(0,0,255), 3 );
			drawCross( predictPt, Scalar(0,255,0), 3 );
			line( img, statePt, measPt, Scalar(0,0,255), 3, CV_AA, 0 );
			line( img, statePt, predictPt, Scalar(0,255,255), 3, CV_AA, 0 );

			if(theRNG().uniform(0,4) != 0)
				KF.correct(measurement);

			randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
			state = KF.transitionMatrix*state + processNoise;

			imshow( "Kalman", img );
			code = (char)waitKey(100);

			if( code > 0 )
				break;
		}
		if( code == 27 || code == 'q' || code == 'Q' )
			break;
	}

	return 0;
}
(2)测试效果

运动跟踪(五):Kalman滤波


下面的内容是转载:

原文:https://blog.csdn.net/onezeros/article/details/6318944

在机器视觉中追踪时常会用到预测算法,kalman是你一定知道的。它可以用来预测各种状态,比如说位置,速度等。关于它的理论有很多很好的文献可以参考。opencv给出了kalman filter的一个实现,而且有范例,但估计不少人对它的使用并不清楚,因为我也是其中一个。本文的应用是对二维坐标进行预测和平滑

 

使用方法:

1、初始化

const int stateNum=4;//状态数,包括(x,y,dx,dy)坐标及速度(每次移动的距离)
const int measureNum=2;//观测量,能看到的是坐标值,当然也可以自己计算速度,但没必要
Kalman* kalman = cvCreateKalman( stateNum, measureNum, 0 );//state(x,y,detaX,detaY)


转移矩阵或者说增益矩阵的值好像有点莫名其妙

[cpp] view plain copy
  1. float A[stateNum][stateNum] ={//transition matrix  
  2.         1,0,1,0,  
  3.         0,1,0,1,  
  4.         0,0,1,0,  
  5.         0,0,0,1  
  6.     };  

看下图就清楚了

运动跟踪(五):Kalman滤波

X1=X+dx,依次类推
所以这个矩阵还是很容易却确定的,可以根据自己的实际情况定制转移矩阵

同样的方法,三维坐标的转移矩阵可以如下

[cpp] view plain copy
  1. float A[stateNum][stateNum] ={//transition matrix  
  2.         1,0,0,1,0,0,  
  3.         0,1,0,0,1,0,  
  4.         0,0,1,0,0,1,  
  5.         0,0,0,1,0,0,  
  6.         0,0,0,0,1,0,  
  7.         0,0,0,0,0,1  
  8.     };  

当然并不一定得是1和0


2.预测cvKalmanPredict,然后读出自己需要的值
3.更新观测矩阵 
4.更新CvKalman

 只有第一步麻烦些。上述这几步跟代码中的序号对应

 如果你在做tracking,下面的例子或许更有用些。

 

[cpp] view plain copy
  1. #include <cv.h>  
  2. #include <cxcore.h>  
  3. #include <highgui.h>  
  4.   
  5. #include <cmath>  
  6. #include <vector>  
  7. #include <iostream>  
  8. using namespace std;  
  9.   
  10. const int winHeight=600;  
  11. const int winWidth=800;  
  12.   
  13.   
  14. CvPoint mousePosition=cvPoint(winWidth>>1,winHeight>>1);  
  15.   
  16. //mouse event callback  
  17. void mouseEvent(int event, int x, int y, int flags, void *param )  
  18. {  
  19.     if (event==CV_EVENT_MOUSEMOVE) {  
  20.         mousePosition=cvPoint(x,y);  
  21.     }  
  22. }  
  23.   
  24. int main (void)  
  25. {  
  26.     //1.kalman filter setup  
  27.     const int stateNum=4;  
  28.     const int measureNum=2;  
  29.     CvKalman* kalman = cvCreateKalman( stateNum, measureNum, 0 );//state(x,y,detaX,detaY)  
  30.     CvMat* process_noise = cvCreateMat( stateNum, 1, CV_32FC1 );  
  31.     CvMat* measurement = cvCreateMat( measureNum, 1, CV_32FC1 );//measurement(x,y)  
  32.     CvRNG rng = cvRNG(-1);  
  33.     float A[stateNum][stateNum] ={//transition matrix  
  34.         1,0,1,0,  
  35.         0,1,0,1,  
  36.         0,0,1,0,  
  37.         0,0,0,1  
  38.     };  
  39.   
  40.     memcpy( kalman->transition_matrix->data.fl,A,sizeof(A));  
  41.     cvSetIdentity(kalman->measurement_matrix,cvRealScalar(1) );  
  42.     cvSetIdentity(kalman->process_noise_cov,cvRealScalar(1e-5));  
  43.     cvSetIdentity(kalman->measurement_noise_cov,cvRealScalar(1e-1));  
  44.     cvSetIdentity(kalman->error_cov_post,cvRealScalar(1));  
  45.     //initialize post state of kalman filter at random  
  46.     cvRandArr(&rng,kalman->state_post,CV_RAND_UNI,cvRealScalar(0),cvRealScalar(winHeight>winWidth?winWidth:winHeight));  
  47.   
  48.     CvFont font;  
  49.     cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1);  
  50.   
  51.     cvNamedWindow("kalman");  
  52.     cvSetMouseCallback("kalman",mouseEvent);  
  53.     IplImage* img=cvCreateImage(cvSize(winWidth,winHeight),8,3);  
  54.     while (1){  
  55.         //2.kalman prediction  
  56.         const CvMat* prediction=cvKalmanPredict(kalman,0);  
  57.         CvPoint predict_pt=cvPoint((int)prediction->data.fl[0],(int)prediction->data.fl[1]);  
  58.   
  59.         //3.update measurement  
  60.         measurement->data.fl[0]=(float)mousePosition.x;  
  61.         measurement->data.fl[1]=(float)mousePosition.y;  
  62.   
  63.         //4.update  
  64.         cvKalmanCorrect( kalman, measurement );       
  65.   
  66.         //draw   
  67.         cvSet(img,cvScalar(255,255,255,0));  
  68.         cvCircle(img,predict_pt,5,CV_RGB(0,255,0),3);//predicted point with green  
  69.         cvCircle(img,mousePosition,5,CV_RGB(255,0,0),3);//current position with red  
  70.         char buf[256];  
  71.         sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);  
  72.         cvPutText(img,buf,cvPoint(10,30),&font,CV_RGB(0,0,0));  
  73.         sprintf_s(buf,256,"current position :(%3d,%3d)",mousePosition.x,mousePosition.y);  
  74.         cvPutText(img,buf,cvPoint(10,60),&font,CV_RGB(0,0,0));  
  75.           
  76.         cvShowImage("kalman", img);  
  77.         int key=cvWaitKey(3);  
  78.         if (key==27){//esc     
  79.             break;     
  80.         }  
  81.     }        
  82.   
  83.     cvReleaseImage(&img);  
  84.     cvReleaseKalman(&kalman);  
  85.     return 0;  
  86. }  

 

kalman filter 视频演示:

http://v.youku.com/v_show/id_XMjU4MzEyODky.html

 

demo snapshot:

运动跟踪(五):Kalman滤波