欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

卡尔曼滤波器和连续自适应漂移组合进行目标跟踪:kalman+camshift

程序员文章站 2024-03-25 22:06:52
...

卡尔曼滤波器和连续自适应漂移组合进行目标跟踪,具体概念解释参考本人OpenCV系列文章,代码实现如下:

 

import numpy as np
import cv2

cap = cv2.VideoCapture(0)

# take first frame of the video
ret,frame = cap.read()

# setup initial location of window
r,h,c,w = 300,200,400,300  # simply hardcoded the values
track_window = (c,r,w,h)


roi = frame[r:r+h, c:c+w]
hsv_roi =  cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((160., 30.,32.)), np.array((180.,120.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )

kalman = cv2.KalmanFilter(4,2)
kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32)
kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32)
kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * 0.03

measurement = np.array((2,1), np.float32) 
prediction = np.zeros((2,1), np.float32)

def center(points):
    x = (points[0][0] + points[1][0] + points[2][0] + points[3][0]) / 4.0
    y = (points[0][1] + points[1][1] + points[2][1] + points[3][1]) / 4.0
    return np.array([np.float32(x), np.float32(y)], np.float32)

while(1):
    ret ,frame = cap.read()

    if ret == True:
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
        
        ret, track_window = cv2.CamShift(dst, track_window, term_crit)
        
        pts = cv2.boxPoints(ret)
        pts = np.int0(pts)
        (cx, cy), radius = cv2.minEnclosingCircle(pts)
        kalman.correct(center(pts))
        img2 = cv2.polylines(frame,[pts],True, 255,2)
        prediction = kalman.predict()
        cv2.circle(frame, (prediction[0], prediction[1]), int(radius), (0, 255, 0))
        cv2.imshow('img2',img2)
        k = cv2.waitKey(60) & 0xff
        if k == 27:
            break

    else:
        break

cv2.destroyAllWindows()
cap.release()

 

效果图:

卡尔曼滤波器和连续自适应漂移组合进行目标跟踪:kalman+camshift