欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

图像分割

程序员文章站 2024-03-25 08:31:40
...

图像分割


1.固定阈值

#加载opencv和matplotlib
import cv2
import matplotlib.pyplot as plt

# 灰度图读入
img = cv2.imread('./image/thresh.png', 0)
threshold = 127
# 阈值分割
ret, th = cv2.threshold(img, threshold, 255, cv2.THRESH_BINARY)
print(ret)

cv2.imshow('thresh', th)
cv2.waitKey(0)
cv2.destroyAllWindows()

2.固定阈值不同方法比较

#导入第三方包
import cv2
from matplotlib import pyplot as plt
#opencv读取图像 
img = cv2.imread('./image/person.png',0)
#5种阈值法图像分割
ret, thresh1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img, 127, 255,cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)

images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
#使用for循环进行遍历,matplotlib进行显示
for i in range(6):
    plt.subplot(2,3, i+1)
    plt.imshow(images[i],cmap='gray')
    plt.xticks([])
    plt.yticks([])

plt.suptitle('fixed threshold')
plt.show()

3.自适应阈值与固定阈值对比

#自适应阈值与固定阈值对比
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('./image/paper2.png', 0)

# 固定阈值
ret, th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
# 自适应阈值
th2 = cv2.adaptiveThreshold(
    img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY,11, 4)
th3 = cv2.adaptiveThreshold(
    img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 4)
#全局阈值,均值自适应,高斯加权自适应对比
titles = ['Original', 'Global(v = 127)', 'Adaptive Mean', 'Adaptive Gaussian']
images = [img, th1, th2, th3]
for i in range(4):
    plt.subplot(2, 2, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i], fontsize=8)
    plt.xticks([]), plt.yticks([])
plt.show()

4 迭代法

import tensorflow as tf
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm

def best_thresh(img):
    img_array = np.array(img).astype(np.float32)#转化成数组
    I=img_array
    zmax=np.max(I)
    zmin=np.min(I)
    tk=(zmax+zmin)/2#设置初始阈值
    #根据阈值将图像进行分割为前景和背景,分别求出两者的平均灰度zo和zb
    b=1
    m,n=I.shape;
    while b==0:
        ifg=0
        ibg=0
        fnum=0
        bnum=0
        for i in range(1,m):
             for j in range(1,n):
                tmp=I(i,j)
                if tmp>=tk:
                    ifg=ifg+1
                    fnum=fnum+int(tmp)#前景像素的个数以及像素值的总和
                else:
                    ibg=ibg+1
                    bnum=bnum+int(tmp)#背景像素的个数以及像素值的总和
        #计算前景和背景的平均值
        zo=int(fnum/ifg)
        zb=int(bnum/ibg)
        if tk==int((zo+zb)/2):
            b=0
        else:
            tk=int((zo+zb)/2)
    return tk

img = cv2.imread("./image/bird.png")
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
img = cv2.resize(gray,(200,200))#大小
yvzhi=best_thresh(img)
ret1, th1 = cv2.threshold(img, yvzhi, 255, cv2.THRESH_BINARY)
print(ret1)
plt.imshow(th1,cmap=cm.gray)
plt.show()

5.otsu大津法

import cv2
from matplotlib import pyplot as plt
img = cv2.imread('./image/noisy.png', 0)
# 固定阈值法
ret1, th1 = cv2.threshold(img, 100, 255, cv2.THRESH_BINARY)
# Otsu阈值法
ret2, th2 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

# 先进行高斯滤波,再使用Otsu阈值法
blur = cv2.GaussianBlur(img, (5, 5), 0)
ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
images = [img, 0, th1, img, 0, th2, blur, 0, th3]
titles = ['Original', 'Histogram', 'Global(v=100)',
         'Original', 'Histogram', "Otsu's",
         'Gaussian filtered Image', 'Histogram', "Otsu's"]

for i in range(3):
    # 绘制原图
    plt.subplot(3, 3, i * 3 + 1)
    plt.imshow(images[i * 3], 'gray')
    plt.title(titles[i * 3], fontsize=8)
    plt.xticks([]), plt.yticks([])
    
    # 绘制直方图plt.hist, ravel函数将数组降成一维
    plt.subplot(3, 3, i * 3 + 2)
    plt.hist(images[i * 3].ravel(), 256)
    plt.title(titles[i * 3 + 1], fontsize=8)
    plt.xticks([]), plt.yticks([])
    
    # 绘制阈值图
    plt.subplot(3, 3, i * 3 + 3)
    plt.imshow(images[i * 3 + 2], 'gray')
    plt.title(titles[i * 3 + 2], fontsize=8)
    plt.xticks([]), plt.yticks([])
plt.show()


#Otsu源码

#Otsu源码
import numpy as np
 
def OTSU_enhance(img_gray, th_begin=0, th_end=256, th_step=1):
    #"must input a gary_img"
    assert img_gray.ndim == 2
 
    max_g = 0
    suitable_th = 0
    for threshold in range(th_begin, th_end, th_step):
        bin_img = img_gray > threshold
        bin_img_inv = img_gray <= threshold
        fore_pix = np.sum(bin_img)
        back_pix = np.sum(bin_img_inv)
        if 0 == fore_pix:
            break
        if 0 == back_pix:
            continue
 
        w0 = float(fore_pix) / img_gray.size
        u0 = float(np.sum(img_gray * bin_img)) / fore_pix
        w1 = float(back_pix) / img_gray.size
        u1 = float(np.sum(img_gray * bin_img_inv)) / back_pix
        # intra-class variance
        g = w0 * w1 * (u0 - u1) * (u0 - u1)
        if g > max_g:
            max_g = g
            suitable_th = threshold
    return suitable_th
img = cv2.imread('noisy.png', 0)
thresh = OTSU_enhance(img)
ret1, th1 = cv2.threshold(img, thresh, 255, cv2.THRESH_BINARY)
ret2, th2 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
a = plt.imshow(th1,cmap=cm.gray)
plt.show(a)
b = plt.imshow(th2,cmap=cm.gray)
plt.show(b)

6.sobel代码

import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('image/girl2.png',0)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)



plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()

7.Canny边缘检测算法

#加载opencv和numpy
import cv2
import numpy as np
#以灰度图形式读入图像
img = cv2.imread('image/canny.png')
v1 = cv2.Canny(img, 80, 150,(3,3))
v2 = cv2.Canny(img, 50, 100,(5,5))

#np.vstack():在竖直方向上堆叠
#np.hstack():在水平方向上平铺堆叠
ret = np.hstack((v1, v2))
cv2.imshow('img', ret)
cv2.waitKey(0)
cv2.destroyAllWindows()

8.连通区域分析

import cv2
import numpy as np

# 4邻域的连通域和 8邻域的连通域
# [row, col]
NEIGHBOR_HOODS_4 = True
OFFSETS_4 = [[0, -1], [-1, 0], [0, 0], [1, 0], [0, 1]]

NEIGHBOR_HOODS_8 = False
OFFSETS_8 = [[-1, -1], [0, -1], [1, -1],
             [-1,  0], [0,  0], [1,  0],
             [-1,  1], [0,  1], [1,  1]]
#第二遍扫描
def reorganize(binary_img: np.array):
    index_map = []
    points = []
    index = -1
    rows, cols = binary_img.shape
    for row in range(rows):
        for col in range(cols):
            var = binary_img[row][col]
            if var < 0.5:
                continue
            if var in index_map:
                index = index_map.index(var)
                num = index + 1
            else:
                index = len(index_map)
                num = index + 1
                index_map.append(var)
                points.append([])
            binary_img[row][col] = num
            points[index].append([row, col])
    #print(binary_img)
    #print(points)
    return binary_img, points

#四领域或八领域判断
def neighbor_value(binary_img: np.array, offsets, reverse=False):
    rows, cols = binary_img.shape
    label_idx = 0
    rows_ = [0, rows, 1] if reverse == False else [rows-1, -1, -1]
    cols_ = [0, cols, 1] if reverse == False else [cols-1, -1, -1]
    for row in range(rows_[0], rows_[1], rows_[2]):
        for col in range(cols_[0], cols_[1], cols_[2]):
            label = 256
            if binary_img[row][col] < 0.5:
                continue
            for offset in offsets:
                neighbor_row = min(max(0, row+offset[0]), rows-1)
                neighbor_col = min(max(0, col+offset[1]), cols-1)
                neighbor_val = binary_img[neighbor_row, neighbor_col]
                if neighbor_val < 0.5:
                    continue
                label = neighbor_val if neighbor_val < label else label
            if label == 255:
                label_idx += 1
                label = label_idx
            binary_img[row][col] = label
    print('第一遍扫描:',binary_img)
    print('开始第二遍...')
    return binary_img

# binary_img: bg-0, object-255; int
#第一遍扫描
def Two_Pass(binary_img: np.array, neighbor_hoods):
    if neighbor_hoods == NEIGHBOR_HOODS_4:
        offsets = OFFSETS_4
    elif neighbor_hoods == NEIGHBOR_HOODS_8:
        offsets = OFFSETS_8
    else:
        raise ValueError

    binary_img = neighbor_value(binary_img, offsets, False)

    return binary_img

if __name__ == "__main__":
    #创建四行七列的矩阵
    binary_img = np.zeros((4, 7), dtype=np.int16)
    #指定点设置为255
    index = [[0, 2], [0, 5],
            [1, 0], [1, 1], [1, 2], [1, 4], [1, 5], [1, 6],
            [2, 2], [2, 5],
            [3, 1], [3, 2], [3, 4],[3,5], [3, 6]]
    for i in index:
        binary_img[i[0], i[1]] = np.int16(255)

    print("原始二值图像")
    print(binary_img)

    #print("Two_Pass")
    #调用Two Pass算法,计算第一遍扫面的结果
    binary_img = Two_Pass(binary_img, NEIGHBOR_HOODS_4)
    #print(binary_img)
    #计算第一遍扫面的结果
    binary_img, points = reorganize(binary_img)
    print(binary_img)
    #print(points)

9.区域生长算法

# -*- coding:utf-8 -*-
import cv2
import numpy as np

####################################################################################



#######################################################################################
class Point(object):
    def __init__(self , x , y):
        self.x = x
        self.y = y
    def getX(self):
        return self.x
    def getY(self):
        return self.y
connects = [ Point(-1, -1), Point(0, -1), Point(1, -1), Point(1, 0),
            Point(1, 1), Point(0, 1), Point(-1, 1), Point(-1, 0)]
#####################################################################################
#计算两个点间的欧式距离
def get_dist(seed_location1,seed_location2):
    l1 = im[seed_location1.x , seed_location1.y]
    l2 = im[seed_location2.x , seed_location2.y]
    count = np.sqrt(np.sum(np.square(l1-l2)))
    return count

#import Image
im = cv2.imread('image/222.jpg')
cv2.imshow('src' , im)
cv2.waitKey(0)
cv2.destroyAllWindows()
im_shape = im.shape
height = im_shape[0]
width = im_shape[1]

print( 'the shape of image :', im_shape)

#标记,判断种子是否已经生长
img_mark = np.zeros([height , width])
cv2.imshow('img_mark' , img_mark)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 建立空的图像数组,作为一类
img_re = im.copy()
for i in range(height):
    for j in range(width):
        img_re[i, j][0] = 0
        img_re[i, j][1] = 0
        img_re[i, j][2] = 0
cv2.imshow('img_re' , img_re)
cv2.waitKey(0)
cv2.destroyAllWindows()
#取一点作为种子点
seed_list = []
seed_list.append(Point(15, 15))
T = 7#阈值
class_k = 1#类别
#生长一个类
while (len(seed_list) > 0):
    seed_tmp = seed_list[0]
    #将以生长的点从一个类的种子点列表中删除
    seed_list.pop(0)


    img_mark[seed_tmp.x, seed_tmp.y] = class_k

    # 遍历8邻域
    for i in range(8):
        tmpX = seed_tmp.x + connects[i].x
        tmpY = seed_tmp.y + connects[i].y

        if (tmpX < 0 or tmpY < 0 or tmpX >= height or tmpY >= width):
            continue
        dist = get_dist(seed_tmp, Point(tmpX, tmpY))
        #在种子集合中满足条件的点进行生长
        if (dist < T and img_mark[tmpX, tmpY] == 0):
            img_re[tmpX, tmpY][0] = im[tmpX, tmpY][0]
            img_re[tmpX, tmpY][1] = im[tmpX, tmpY][1]
            img_re[tmpX, tmpY][2] = im[tmpX, tmpY][2]
            img_mark[tmpX, tmpY] = class_k
            seed_list.append(Point(tmpX, tmpY))


########################################################################################

#输出图像
cv2.imshow('OUTIMAGE' , img_re)
cv2.waitKey(0)
cv2.destroyAllWindows()

10.分水岭算法

# import cv2
"""
完成分水岭算法步骤:
1、加载原始图像
2、阈值分割,将图像分割为黑白两个部分
3、对图像进行开运算,即先腐蚀在膨胀
4、对开运算的结果再进行 膨胀,得到大部分是背景的区域
5、通过距离变换 Distance Transform 获取前景区域
6、背景区域sure_bg 和前景区域sure_fg相减,得到即有前景又有背景的重合区域
7、连通区域处理
8、最后使用分水岭算法
"""

import cv2
import numpy as np


# Step1. 加载图像
img = cv2.imread('image/yezi.jpg')
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Step2.阈值分割,将图像分为黑白两部分
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
# cv2.imshow("thresh", thresh)

# Step3. 对图像进行“开运算”,先腐蚀再膨胀
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2)
# cv2.imshow("opening", opening)

# Step4. 对“开运算”的结果进行膨胀,得到大部分都是背景的区域
sure_bg = cv2.dilate(opening, kernel, iterations=3)
cv2.imshow("sure_bg", sure_bg)
cv2.waitKey(0)
cv2.destroyAllWindows()

# Step5.通过distanceTransform获取前景区域
dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)  # DIST_L1 DIST_C只能 对应掩膜为3    DIST_L2 可以为3或者5
cv2.imshow("dist_transform", dist_transform)
cv2.waitKey(0)
cv2.destroyAllWindows()
print(dist_transform.max())
ret, sure_fg = cv2.threshold(dist_transform, 0.1 * dist_transform.max(), 255, 0)


# Step6. sure_bg与sure_fg相减,得到既有前景又有背景的重合区域   #此区域和轮廓区域的关系未知 
sure_fg = np.uint8(sure_fg)
unknow = cv2.subtract(sure_bg, sure_fg)
cv2.imshow("unknow", unknow)
cv2.waitKey(0)
cv2.destroyAllWindows()

# Step7. 连通区域处理
ret, markers = cv2.connectedComponents(sure_fg,connectivity=8) #对连通区域进行标号  序号为 0 - N-1 
#print(markers)
print(ret)
markers = markers + 1           #OpenCV 分水岭算法对物体做的标注必须都 大于1 ,背景为标号 为0  因此对所有markers 加1  变成了  1  -  N
#去掉属于背景区域的部分(即让其变为0,成为背景)
# 此语句的Python语法 类似于if ,“unknow==255” 返回的是图像矩阵的真值表。
markers[unknow==255] = 0   

# Step8.分水岭算法
markers = cv2.watershed(img, markers)  #分水岭算法后,所有轮廓的像素点被标注为  -1 
#print(markers)

img[markers == -1] = [0, 0, 255]   # 标注为-1 的像素点标 红
cv2.imshow("dst", img)
cv2.waitKey(0)
cv2.destroyAllWindows()