ORBSLAM2源码学习(2)Frame类
程序员文章站
2024-03-25 08:27:22
...
这次是Frame类,Frame类应该可以说是SLAM系统中处理的一个基本单元,它将一副(或双目)图像包装成一个类,给他增加基本的信息,如这幅图的位姿、编号、特征点、对应的参考帧等重要信息,还包含一些设置参数、获取参数的方法。是SLAM的基本数据单元,直接上代码
Frame.h
#ifndef FRAME_H
#define FRAME_H
#include<vector>
#include "MapPoint.h"
#include "Thirdparty/DBoW2/DBoW2/BowVector.h"
#include "Thirdparty/DBoW2/DBoW2/FeatureVector.h"
#include "ORBVocabulary.h"
#include "KeyFrame.h"
#include "ORBextractor.h"
#include <opencv2/opencv.hpp>
namespace ORB_SLAM2
{
#define FRAME_GRID_ROWS 48
#define FRAME_GRID_COLS 64
class MapPoint;
class KeyFrame;
class Frame
{
public:
Frame();
// Copy constructor.
Frame(const Frame &frame);
// Constructor for stereo cameras.
Frame(const cv::Mat &imLeft, const cv::Mat &imRight, const double &timeStamp, ORBextractor* extractorLeft, ORBextractor* extractorRight, ORBVocabulary* voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth);
// Constructor for RGB-D cameras.
Frame(const cv::Mat &imGray, const cv::Mat &imDepth, const double &timeStamp, ORBextractor* extractor,ORBVocabulary* voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth);
// Constructor for Monocular cameras.
Frame(const cv::Mat &imGray, const double &timeStamp, ORBextractor* extractor,ORBVocabulary* voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth);
// Extract ORB on the image. 0 for left image and 1 for right image.
// 提取的关键点存放在mvKeys和mDescriptors中
// ORB是直接调orbExtractor提取的
void ExtractORB(int flag, const cv::Mat &im);
// Compute Bag of Words representation.
// 存放在mBowVec中
void ComputeBoW();
// Set the camera pose.
// 用Tcw更新mTcw
void SetPose(cv::Mat Tcw);
// Computes rotation, translation and camera center matrices from the camera pose.
void UpdatePoseMatrices();
// Returns the camera center.
inline cv::Mat GetCameraCenter()
{
return mOw.clone();
}
// Returns inverse of rotation
inline cv::Mat GetRotationInverse()
{
return mRwc.clone();
}
// Check if a MapPoint is in the frustum of the camera
// and fill variables of the MapPoint to be used by the tracking
// 判断路标点是否在视野中
bool isInFrustum(MapPoint* pMP, float viewingCosLimit);
// Compute the cell of a keypoint (return false if outside the grid)
bool PosInGrid(const cv::KeyPoint &kp, int &posX, int &posY);
vector<size_t> GetFeaturesInArea(const float &x, const float &y, const float &r, const int minLevel=-1, const int maxLevel=-1) const;
// Search a match for each keypoint in the left image to a keypoint in the right image.
// If there is a match, depth is computed and the right coordinate associated to the left keypoint is stored.
void ComputeStereoMatches();
// Associate a "right" coordinate to a keypoint if there is valid depth in the depthmap.
void ComputeStereoFromRGBD(const cv::Mat &imDepth);
// Backprojects a keypoint (if stereo/depth info available) into 3D world coordinates.
cv::Mat UnprojectStereo(const int &i);
public:
// Vocabulary used for relocalization.
ORBVocabulary* mpORBvocabulary;
// Feature extractor. The right is used only in the stereo case.
ORBextractor* mpORBextractorLeft, *mpORBextractorRight;
// Frame timestamp.
double mTimeStamp;
// Calibration matrix and OpenCV distortion parameters.
cv::Mat mK;
static float fx;
static float fy;
static float cx;
static float cy;
static float invfx;
static float invfy;
cv::Mat mDistCoef;
// Stereo baseline multiplied by fx.
float mbf;
// Stereo baseline in meters.
float mb;
// Threshold close/far points. Close points are inserted from 1 view.
// Far points are inserted as in the monocular case from 2 views.
float mThDepth;
// Number of KeyPoints.
int N; ///< KeyPoints数量
// Vector of keypoints (original for visualization) and undistorted (actually used by the system).
// In the stereo case, mvKeysUn is redundant as images must be rectified.
// In the RGB-D case, RGB images can be distorted.
// mvKeys:原始左图像提取出的特征点(未校正)
// mvKeysRight:原始右图像提取出的特征点(未校正)
// mvKeysUn:校正mvKeys后的特征点
std::vector<cv::KeyPoint> mvKeys, mvKeysRight;
std::vector<cv::KeyPoint> mvKeysUn;
// Corresponding stereo coordinate and depth for each keypoint.
// "Monocular" keypoints have a negative value.
// 对于双目,mvuRight存储了左目像素点在右目中的对应点的横坐标
// mvDepth对应的深度
// 单目摄像头,这两个容器中存的都是-1
std::vector<float> mvuRight;
std::vector<float> mvDepth;
// Bag of Words Vector structures.
DBoW2::BowVector mBowVec;
DBoW2::FeatureVector mFeatVec;
// ORB descriptor, each row associated to a keypoint.
// 左目摄像头和右目摄像头特征点对应的描述子
cv::Mat mDescriptors, mDescriptorsRight;
// MapPoints associated to keypoints, NULL pointer if no association.
// 每个特征点对应的MapPoint
std::vector<MapPoint*> mvpMapPoints;
// Flag to identify outlier associations.
// 标志位:观测不到Map中的3D点
std::vector<bool> mvbOutlier;
// Keypoints are assigned to cells in a grid to reduce matching complexity when projecting MapPoints.
// 坐标乘以mfGridElementWidthInv和mfGridElementHeightInv就可以确定在哪个格子
static float mfGridElementWidthInv;
static float mfGridElementHeightInv;
// 每个格子分配的特征点数,将图像分成格子,保证提取的特征点比较均匀
// FRAME_GRID_ROWS 48
// FRAME_GRID_COLS 64
std::vector<std::size_t> mGrid[FRAME_GRID_COLS][FRAME_GRID_ROWS];
// Camera pose.
cv::Mat mTcw; ///< 相机姿态 世界坐标系到相机坐标坐标系的变换矩阵
// Current and Next Frame id.
static long unsigned int nNextId; //< Next Frame id.
long unsigned int mnId; //< Current Frame id.
// Reference Keyframe.
KeyFrame* mpReferenceKF; //指针,指向参考关键帧
// Scale pyramid info.
int mnScaleLevels; //图像提金字塔的层数
float mfScaleFactor; //图像提金字塔的尺度因子
float mfLogScaleFactor;
vector<float> mvScaleFactors;
vector<float> mvInvScaleFactors;
vector<float> mvLevelSigma2;
vector<float> mvInvLevelSigma2;
// Undistorted Image Bounds (computed once).
// 用于确定画格子时的边界
static float mnMinX;
static float mnMaxX;
static float mnMinY;
static float mnMaxY;
static bool mbInitialComputations;
private:
// Undistort keypoints given OpenCV distortion parameters.
// Only for the RGB-D case. Stereo must be already rectified!
// (called in the constructor).
void UndistortKeyPoints();
// Computes image bounds for the undistorted image (called in the constructor).
void ComputeImageBounds(const cv::Mat &imLeft);
// Assign keypoints to the grid for speed up feature matching (called in the constructor).
void AssignFeaturesToGrid();
// Rotation, translation and camera center
cv::Mat mRcw; ///< Rotation from world to camera
cv::Mat mtcw; ///< Translation from world to camera
cv::Mat mRwc; ///< Rotation from camera to world
cv::Mat mOw; ///< mtwc,Translation from camera to world
};
}// namespace ORB_SLAM
#endif // FRAME_H
具体实现在Frame.cc文件中
#include "Frame.h"
#include "Converter.h"
#include "ORBmatcher.h"
#include <thread>
namespace ORB_SLAM2
{
long unsigned int Frame::nNextId=0;
bool Frame::mbInitialComputations=true;
float Frame::cx, Frame::cy, Frame::fx, Frame::fy, Frame::invfx, Frame::invfy;
float Frame::mnMinX, Frame::mnMinY, Frame::mnMaxX, Frame::mnMaxY;
float Frame::mfGridElementWidthInv, Frame::mfGridElementHeightInv;
Frame::Frame()
{}
// Copy constructor
Frame::Frame(const Frame &frame)
:mpORBvocabulary(frame.mpORBvocabulary), mpORBextractorLeft(frame.mpORBextractorLeft), mpORBextractorRight(frame.mpORBextractorRight),
mTimeStamp(frame.mTimeStamp), mK(frame.mK.clone()), mDistCoef(frame.mDistCoef.clone()),
mbf(frame.mbf), mb(frame.mb), mThDepth(frame.mThDepth), N(frame.N), mvKeys(frame.mvKeys),
mvKeysRight(frame.mvKeysRight), mvKeysUn(frame.mvKeysUn), mvuRight(frame.mvuRight),
mvDepth(frame.mvDepth), mBowVec(frame.mBowVec), mFeatVec(frame.mFeatVec),
mDescriptors(frame.mDescriptors.clone()), mDescriptorsRight(frame.mDescriptorsRight.clone()),
mvpMapPoints(frame.mvpMapPoints), mvbOutlier(frame.mvbOutlier), mnId(frame.mnId),
mpReferenceKF(frame.mpReferenceKF), mnScaleLevels(frame.mnScaleLevels),
mfScaleFactor(frame.mfScaleFactor), mfLogScaleFactor(frame.mfLogScaleFactor),
mvScaleFactors(frame.mvScaleFactors), mvInvScaleFactors(frame.mvInvScaleFactors),
mvLevelSigma2(frame.mvLevelSigma2), mvInvLevelSigma2(frame.mvInvLevelSigma2)
{
for(int i=0;i<FRAME_GRID_COLS;i++)
for(int j=0; j<FRAME_GRID_ROWS; j++)
mGrid[i][j]=frame.mGrid[i][j];
if(!frame.mTcw.empty())
SetPose(frame.mTcw);
}
// 双目的初始化
Frame::Frame(const cv::Mat &imLeft, const cv::Mat &imRight, const double &timeStamp, ORBextractor* extractorLeft, ORBextractor* extractorRight, ORBVocabulary* voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth)
:mpORBvocabulary(voc),mpORBextractorLeft(extractorLeft),mpORBextractorRight(extractorRight), mTimeStamp(timeStamp), mK(K.clone()),mDistCoef(distCoef.clone()), mbf(bf), mb(0), mThDepth(thDepth),
mpReferenceKF(static_cast<KeyFrame*>(NULL))
{
// Frame ID
mnId=nNextId++;
// Scale Level Info
mnScaleLevels = mpORBextractorLeft->GetLevels();
mfScaleFactor = mpORBextractorLeft->GetScaleFactor();
mfLogScaleFactor = log(mfScaleFactor);
mvScaleFactors = mpORBextractorLeft->GetScaleFactors();
mvInvScaleFactors = mpORBextractorLeft->GetInverseScaleFactors();
mvLevelSigma2 = mpORBextractorLeft->GetScaleSigmaSquares();
mvInvLevelSigma2 = mpORBextractorLeft->GetInverseScaleSigmaSquares();
// ORB extraction
// 同时对左右目提特征
thread threadLeft(&Frame::ExtractORB,this,0,imLeft);
thread threadRight(&Frame::ExtractORB,this,1,imRight);
threadLeft.join();
threadRight.join();
N = mvKeys.size();
if(mvKeys.empty())
return;
// Undistort特征点,这里没有对双目进行校正,因为要求输入的图像已经进行极线校正
UndistortKeyPoints();
// 计算双目间的匹配, 匹配成功的特征点会计算其深度
// 深度存放在mvuRight 和 mvDepth 中
ComputeStereoMatches();
// 对应的mappoints
mvpMapPoints = vector<MapPoint*>(N,static_cast<MapPoint*>(NULL));
mvbOutlier = vector<bool>(N,false);
// This is done only for the first Frame (or after a change in the calibration)
// 只执行一次
if(mbInitialComputations)
{
ComputeImageBounds(imLeft);
mfGridElementWidthInv=static_cast<float>(FRAME_GRID_COLS)/(mnMaxX-mnMinX);
mfGridElementHeightInv=static_cast<float>(FRAME_GRID_ROWS)/(mnMaxY-mnMinY);
fx = K.at<float>(0,0);
fy = K.at<float>(1,1);
cx = K.at<float>(0,2);
cy = K.at<float>(1,2);
invfx = 1.0f/fx;
invfy = 1.0f/fy;
mbInitialComputations=false;
}
mb = mbf/fx;
AssignFeaturesToGrid();
}
// RGBD初始化
Frame::Frame(const cv::Mat &imGray, const cv::Mat &imDepth, const double &timeStamp, ORBextractor* extractor,ORBVocabulary* voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth)
:mpORBvocabulary(voc),mpORBextractorLeft(extractor),mpORBextractorRight(static_cast<ORBextractor*>(NULL)),
mTimeStamp(timeStamp), mK(K.clone()),mDistCoef(distCoef.clone()), mbf(bf), mThDepth(thDepth)
{
// Frame ID
mnId=nNextId++;
// Scale Level Info
mnScaleLevels = mpORBextractorLeft->GetLevels();
mfScaleFactor = mpORBextractorLeft->GetScaleFactor();
mfLogScaleFactor = log(mfScaleFactor);
mvScaleFactors = mpORBextractorLeft->GetScaleFactors();
mvInvScaleFactors = mpORBextractorLeft->GetInverseScaleFactors();
mvLevelSigma2 = mpORBextractorLeft->GetScaleSigmaSquares();
mvInvLevelSigma2 = mpORBextractorLeft->GetInverseScaleSigmaSquares();
// ORB extraction
ExtractORB(0,imGray);
N = mvKeys.size();
if(mvKeys.empty())
return;
UndistortKeyPoints();
ComputeStereoFromRGBD(imDepth);
mvpMapPoints = vector<MapPoint*>(N,static_cast<MapPoint*>(NULL));
mvbOutlier = vector<bool>(N,false);
// This is done only for the first Frame (or after a change in the calibration)
// 只执行一次
if(mbInitialComputations)
{
ComputeImageBounds(imGray);
mfGridElementWidthInv=static_cast<float>(FRAME_GRID_COLS)/static_cast<float>(mnMaxX-mnMinX);
mfGridElementHeightInv=static_cast<float>(FRAME_GRID_ROWS)/static_cast<float>(mnMaxY-mnMinY);
fx = K.at<float>(0,0);
fy = K.at<float>(1,1);
cx = K.at<float>(0,2);
cy = K.at<float>(1,2);
invfx = 1.0f/fx;
invfy = 1.0f/fy;
mbInitialComputations=false;
}
mb = mbf/fx;
AssignFeaturesToGrid();
}
// 单目初始化
Frame::Frame(const cv::Mat &imGray, const double &timeStamp, ORBextractor* extractor,ORBVocabulary* voc, cv::Mat &K, cv::Mat &distCoef, const float &bf, const float &thDepth)
:mpORBvocabulary(voc),mpORBextractorLeft(extractor),mpORBextractorRight(static_cast<ORBextractor*>(NULL)),
mTimeStamp(timeStamp), mK(K.clone()),mDistCoef(distCoef.clone()), mbf(bf), mThDepth(thDepth)
{
// Frame ID
mnId=nNextId++;
// Scale Level Info
mnScaleLevels = mpORBextractorLeft->GetLevels();
mfScaleFactor = mpORBextractorLeft->GetScaleFactor();
mfLogScaleFactor = log(mfScaleFactor);
mvScaleFactors = mpORBextractorLeft->GetScaleFactors();
mvInvScaleFactors = mpORBextractorLeft->GetInverseScaleFactors();
mvLevelSigma2 = mpORBextractorLeft->GetScaleSigmaSquares();
mvInvLevelSigma2 = mpORBextractorLeft->GetInverseScaleSigmaSquares();
// ORB extraction
ExtractORB(0,imGray);
N = mvKeys.size();
if(mvKeys.empty())
return;
// 调用OpenCV的矫正函数矫正orb提取的特征点
UndistortKeyPoints();
// Set no stereo information
mvuRight = vector<float>(N,-1);
mvDepth = vector<float>(N,-1);
mvpMapPoints = vector<MapPoint*>(N,static_cast<MapPoint*>(NULL));
mvbOutlier = vector<bool>(N,false);
// This is done only for the first Frame (or after a change in the calibration)
if(mbInitialComputations)
{
ComputeImageBounds(imGray);
mfGridElementWidthInv=static_cast<float>(FRAME_GRID_COLS)/static_cast<float>(mnMaxX-mnMinX);
mfGridElementHeightInv=static_cast<float>(FRAME_GRID_ROWS)/static_cast<float>(mnMaxY-mnMinY);
fx = K.at<float>(0,0);
fy = K.at<float>(1,1);
cx = K.at<float>(0,2);
cy = K.at<float>(1,2);
invfx = 1.0f/fx;
invfy = 1.0f/fy;
mbInitialComputations=false;
}
mb = mbf/fx;
AssignFeaturesToGrid();
}
void Frame::AssignFeaturesToGrid()
{
int nReserve = 0.5f*N/(FRAME_GRID_COLS*FRAME_GRID_ROWS);
for(unsigned int i=0; i<FRAME_GRID_COLS;i++)
for (unsigned int j=0; j<FRAME_GRID_ROWS;j++)
mGrid[i][j].reserve(nReserve);
// 在mGrid中记录了各特征点
for(int i=0;i<N;i++)
{
const cv::KeyPoint &kp = mvKeysUn[i];
int nGridPosX, nGridPosY;
// 计算在哪个格子中
if(PosInGrid(kp,nGridPosX,nGridPosY))
mGrid[nGridPosX][nGridPosY].push_back(i);
}
}
// 调用ORBExtractor类中的函数提取特征点
void Frame::ExtractORB(int flag, const cv::Mat &im)
{
if(flag==0)
(*mpORBextractorLeft)(im,cv::Mat(),mvKeys,mDescriptors);
else
(*mpORBextractorRight)(im,cv::Mat(),mvKeysRight,mDescriptorsRight);
}
void Frame::SetPose(cv::Mat Tcw)
{
mTcw = Tcw.clone();
UpdatePoseMatrices();
}
void Frame::UpdatePoseMatrices()
{
// [x_camera 1] = [R|t]*[x_world 1],坐标为齐次形式
// x_camera = R*x_world + t
mRcw = mTcw.rowRange(0,3).colRange(0,3);
mRwc = mRcw.t();
mtcw = mTcw.rowRange(0,3).col(3);
mOw = -mRcw.t()*mtcw;
}
/**
* @brief 判断一个点是否在视野内
*
* 计算了重投影坐标,观测方向夹角,预测在当前帧的尺度
* @param pMP MapPoint
* @param viewingCosLimit 视角和平均视角的方向阈值
* @return true if is in view
* @see SearchLocalPoints()
*/
bool Frame::isInFrustum(MapPoint *pMP, float viewingCosLimit)
{
pMP->mbTrackInView = false;
// 3D in absolute coordinates
cv::Mat P = pMP->GetWorldPos();
// 3D in camera coordinates
// 3D点P在相机坐标系下的坐标
const cv::Mat Pc = mRcw*P+mtcw; // 这里的R,t经过初步的优化
const float &PcX = Pc.at<float>(0);
const float &PcY = Pc.at<float>(1);
const float &PcZ = Pc.at<float>(2);
// Check positive depth
if(PcZ<0.0f)
return false;
// Project in image and check it is not outside
// 将MapPoint投影到当前帧, 并判断是否在图像内
const float invz = 1.0f/PcZ;
const float u=fx*PcX*invz+cx;
const float v=fy*PcY*invz+cy;
if(u<mnMinX || u>mnMaxX)
return false;
if(v<mnMinY || v>mnMaxY)
return false;
// Check distance is in the scale invariance region of the MapPoint
// 计算MapPoint到相机中心的距离, 并判断是否在尺度变化的距离内
// 每一个地图点都是对应于若干尺度的金字塔提取出来的,具有一定的有效深度
const float maxDistance = pMP->GetMaxDistanceInvariance();
const float minDistance = pMP->GetMinDistanceInvariance();
// 世界坐标系下,相机到3D点P的向量, 向量方向由相机指向3D点P
const cv::Mat PO = P-mOw;
const float dist = cv::norm(PO);
if(dist<minDistance || dist>maxDistance)
return false;
// Check viewing angle
// 计算当前视角和平均视角夹角的余弦值, 若小于cos(60), 即夹角大于60度则返回
// 每一个地图都有其平均视角,是从能够观测到地图点的帧位姿中计算出
cv::Mat Pn = pMP->GetNormal();
const float viewCos = PO.dot(Pn)/dist;
if(viewCos<viewingCosLimit)
return false;
// Predict scale in the image
// 根据深度预测尺度(对应特征点在一层)
const int nPredictedLevel = pMP->PredictScale(dist,this);
// Data used by the tracking
// 标记该点将来要被投影
pMP->mbTrackInView = true;
pMP->mTrackProjX = u;
pMP->mTrackProjXR = u - mbf*invz; //该3D点投影到双目右侧相机上的横坐标
pMP->mTrackProjY = v;
pMP->mnTrackScaleLevel = nPredictedLevel;
pMP->mTrackViewCos = viewCos;
return true;
}
/**
* 找到在 以x, y为中心,边长为2r的方形内且在[minLevel, maxLevel]的特征点
* @param x 图像坐标u
* @param y 图像坐标v
* @param r 边长
* @param minLevel 最小尺度
* @param maxLevel 最大尺度
* @return 满足条件的特征点的序号
*/
vector<size_t> Frame::GetFeaturesInArea(const float &x, const float &y, const float &r, const int minLevel, const int maxLevel) const
{
vector<size_t> vIndices;
vIndices.reserve(N);
const int nMinCellX = max(0,(int)floor((x-mnMinX-r)*mfGridElementWidthInv));
if(nMinCellX>=FRAME_GRID_COLS)
return vIndices;
const int nMaxCellX = min((int)FRAME_GRID_COLS-1,(int)ceil((x-mnMinX+r)*mfGridElementWidthInv));
if(nMaxCellX<0)
return vIndices;
const int nMinCellY = max(0,(int)floor((y-mnMinY-r)*mfGridElementHeightInv));
if(nMinCellY>=FRAME_GRID_ROWS)
return vIndices;
const int nMaxCellY = min((int)FRAME_GRID_ROWS-1,(int)ceil((y-mnMinY+r)*mfGridElementHeightInv));
if(nMaxCellY<0)
return vIndices;
const bool bCheckLevels = (minLevel>0) || (maxLevel>=0);
for(int ix = nMinCellX; ix<=nMaxCellX; ix++)
{
for(int iy = nMinCellY; iy<=nMaxCellY; iy++)
{
const vector<size_t> vCell = mGrid[ix][iy];
if(vCell.empty())
continue;
for(size_t j=0, jend=vCell.size(); j<jend; j++)
{
const cv::KeyPoint &kpUn = mvKeysUn[vCell[j]];
if(bCheckLevels)
{
if(kpUn.octave<minLevel)
continue;
if(maxLevel>=0)
if(kpUn.octave>maxLevel)
continue;
}
const float distx = kpUn.pt.x-x;
const float disty = kpUn.pt.y-y;
if(fabs(distx)<r && fabs(disty)<r)
vIndices.push_back(vCell[j]);
}
}
}
return vIndices;
}
bool Frame::PosInGrid(const cv::KeyPoint &kp, int &posX, int &posY)
{
posX = round((kp.pt.x-mnMinX)*mfGridElementWidthInv);
posY = round((kp.pt.y-mnMinY)*mfGridElementHeightInv);
//Keypoint's coordinates are undistorted, which could cause to go out of the image
if(posX<0 || posX>=FRAME_GRID_COLS || posY<0 || posY>=FRAME_GRID_ROWS)
return false;
return true;
}
/**
* @brief Bag of Words Representation
* 描述子转换成词袋模型向量
* mBowVec,mFeatVec,其中mFeatVec记录了属于第i个node(在第4层)的ni个描述子
* @see CreateInitialMapMonocular() TrackReferenceKeyFrame() Relocalization()
*/
void Frame::ComputeBoW()
{
if(mBowVec.empty())
{
vector<cv::Mat> vCurrentDesc = Converter::toDescriptorVector(mDescriptors);
mpORBvocabulary->transform(vCurrentDesc,mBowVec,mFeatVec,4);
}
}
// 调用OpenCV的矫正函数矫正orb提取的特征点
void Frame::UndistortKeyPoints()
{
// 如果没有图像是矫正过的,没有失真
if(mDistCoef.at<float>(0)==0.0)
{
mvKeysUn=mvKeys;
return;
}
// Fill matrix with points
// N为提取的特征点数量,将N个特征点保存在N*2的mat中
cv::Mat mat(N,2,CV_32F);
for(int i=0; i<N; i++)
{
mat.at<float>(i,0)=mvKeys[i].pt.x;
mat.at<float>(i,1)=mvKeys[i].pt.y;
}
// Undistort points
// 调整mat的通道为2,矩阵的行列形状不变
mat=mat.reshape(2);
cv::undistortPoints(mat,mat,mK,mDistCoef,cv::Mat(),mK); // 用cv的函数进行失真校正
mat=mat.reshape(1);
// Fill undistorted keypoint vector
// 存储校正后的特征点
mvKeysUn.resize(N);
for(int i=0; i<N; i++)
{
cv::KeyPoint kp = mvKeys[i];
kp.pt.x=mat.at<float>(i,0);
kp.pt.y=mat.at<float>(i,1);
mvKeysUn[i]=kp;
}
}
void Frame::ComputeImageBounds(const cv::Mat &imLeft)
{
if(mDistCoef.at<float>(0)!=0.0)
{
// 矫正前四个边界点:(0,0) (cols,0) (0,rows) (cols,rows)
cv::Mat mat(4,2,CV_32F);
mat.at<float>(0,0)=0.0; //左上
mat.at<float>(0,1)=0.0;
mat.at<float>(1,0)=imLeft.cols; //右上
mat.at<float>(1,1)=0.0;
mat.at<float>(2,0)=0.0; //左下
mat.at<float>(2,1)=imLeft.rows;
mat.at<float>(3,0)=imLeft.cols; //右下
mat.at<float>(3,1)=imLeft.rows;
// Undistort corners
mat=mat.reshape(2);
cv::undistortPoints(mat,mat,mK,mDistCoef,cv::Mat(),mK);
mat=mat.reshape(1);
mnMinX = min(mat.at<float>(0,0),mat.at<float>(2,0));//左上和左下横坐标最小的
mnMaxX = max(mat.at<float>(1,0),mat.at<float>(3,0));//右上和右下横坐标最大的
mnMinY = min(mat.at<float>(0,1),mat.at<float>(1,1));//左上和右上纵坐标最小的
mnMaxY = max(mat.at<float>(2,1),mat.at<float>(3,1));//左下和右下纵坐标最小的
}
else
{
mnMinX = 0.0f;
mnMaxX = imLeft.cols;
mnMinY = 0.0f;
mnMaxY = imLeft.rows;
}
}
/**
* 双目匹配
* 为左图的每一个特征点在右图中找到匹配点
* 根据基线(带状)上描述子距离找到匹配, 再进行SAD精确定位
* 最后对所有SAD的值进行排序, 剔除SAD值较大的匹配对,然后利用抛物线拟合得到亚像素精度的匹配
* 匹配成功后会更新 mvuRight(ur) 和 mvDepth(Z)
*/
void Frame::ComputeStereoMatches()
{
mvuRight = vector<float>(N,-1.0f);
mvDepth = vector<float>(N,-1.0f);
const int thOrbDist = (ORBmatcher::TH_HIGH+ORBmatcher::TH_LOW)/2;
const int nRows = mpORBextractorLeft->mvImagePyramid[0].rows;
//Assign keypoints to row table
// 步骤1:建立特征点搜索范围对应表,一个特征点在一个带状区域内搜索匹配特征点
// 在匹配左右帧的特征点时,虽然已经过了极线矫正,但是不能仅仅搜索极线对应的同一行像素点,而应该根据右目提取特征点时的尺度(金字塔层数),确定一个极线附近的扫描范围r,毕竟测量存在误差
vector<vector<size_t> > vRowIndices(nRows,vector<size_t>());
for(int i=0; i<nRows; i++)
vRowIndices[i].reserve(200);
const int Nr = mvKeysRight.size();
for(int iR=0; iR<Nr; iR++)
{
const cv::KeyPoint &kp = mvKeysRight[iR];
const float &kpY = kp.pt.y;
// 计算匹配搜索的纵向宽度,尺度越大(层数越高,距离越近),搜索范围越大
// 如果特征点在金字塔第一层,则搜索范围为:正负2
// 尺度越大其位置不确定性越高,所以其搜索半径越大
const float r = 2.0f*mvScaleFactors[mvKeysRight[iR].octave];
const int maxr = ceil(kpY+r);
const int minr = floor(kpY-r);
for(int yi=minr;yi<=maxr;yi++)
vRowIndices[yi].push_back(iR);
}
// Set limits for search
const float minZ = mb;
const float minD = 0; // 最小视差, 设置为0即可
const float maxD = mbf/minZ; // 最大视差, 对应最小深度 mbf/minZ = mbf/mb = mbf/(mbf/fx) = fx (wubo???)
// For each left keypoint search a match in the right image
vector<pair<int, int> > vDistIdx;
vDistIdx.reserve(N);
// 对左目相机每个特征点,通过描述子在右目带状搜索区域找到匹配点, 再通过SAD做亚像素匹配
for(int iL=0; iL<N; iL++)
{
const cv::KeyPoint &kpL = mvKeys[iL];
const int &levelL = kpL.octave;
const float &vL = kpL.pt.y;
const float &uL = kpL.pt.x;
// 可能的匹配点
const vector<size_t> &vCandidates = vRowIndices[vL];
if(vCandidates.empty())
continue;
const float minU = uL-maxD; // 最小匹配范围
const float maxU = uL-minD; // 最大匹配范围
if(maxU<0)
continue;
int bestDist = ORBmatcher::TH_HIGH;
size_t bestIdxR = 0;
// 每个特征点描述子占一行,建立一个指针指向iL特征点对应的描述子
const cv::Mat &dL = mDescriptors.row(iL);
// Compare descriptor to right keypoints
// 遍历右目所有可能的匹配点,找出最佳匹配点(描述子距离最小)
for(size_t iC=0; iC<vCandidates.size(); iC++)
{
const size_t iR = vCandidates[iC];
const cv::KeyPoint &kpR = mvKeysRight[iR];
// 仅对近邻尺度的特征点进行匹配
if(kpR.octave<levelL-1 || kpR.octave>levelL+1)
continue;
const float &uR = kpR.pt.x;
if(uR>=minU && uR<=maxU)
{
const cv::Mat &dR = mDescriptorsRight.row(iR);
const int dist = ORBmatcher::DescriptorDistance(dL,dR);
if(dist<bestDist)
{
bestDist = dist;
bestIdxR = iR;
}
}
}
// 最好的匹配的匹配误差存在bestDist,匹配点位置存在bestIdxR中
// Subpixel match by correlation
// 通过SAD匹配提高像素匹配修正量bestincR
if(bestDist<thOrbDist)
{
// coordinates in image pyramid at keypoint scale
// kpL.pt.x对应金字塔最底层坐标,将最佳匹配的特征点对尺度变换到尺度对应层 (scaleduL, scaledvL) (scaleduR0, )
const float uR0 = mvKeysRight[bestIdxR].pt.x;
const float scaleFactor = mvInvScaleFactors[kpL.octave];
const float scaleduL = round(kpL.pt.x*scaleFactor);
const float scaledvL = round(kpL.pt.y*scaleFactor);
const float scaleduR0 = round(uR0*scaleFactor);
// sliding window search
const int w = 5;
cv::Mat IL = mpORBextractorLeft->mvImagePyramid[kpL.octave].rowRange(scaledvL-w,scaledvL+w+1).colRange(scaleduL-w,scaleduL+w+1);
IL.convertTo(IL,CV_32F);
IL = IL - IL.at<float>(w,w) * cv::Mat::ones(IL.rows,IL.cols,CV_32F);//简单归一化,减小光照强度影响
int bestDist = INT_MAX;
int bestincR = 0;
const int L = 5;
vector<float> vDists;
vDists.resize(2*L+1); // 11
// 滑动窗口的滑动范围为(-L, L),提前判断滑动窗口滑动过程中是否会越界
const float iniu = scaleduR0+L-w;
const float endu = scaleduR0+L+w+1;
if(iniu<0 || endu >= mpORBextractorRight->mvImagePyramid[kpL.octave].cols)
continue;
for(int incR=-L; incR<=+L; incR++)
{
// 横向滑动窗口
cv::Mat IR = mpORBextractorRight->mvImagePyramid[kpL.octave].rowRange(scaledvL-w,scaledvL+w+1).colRange(scaleduR0+incR-w,scaleduR0+incR+w+1);
IR.convertTo(IR,CV_32F);
IR = IR - IR.at<float>(w,w) * cv::Mat::ones(IR.rows,IR.cols,CV_32F);
float dist = cv::norm(IL,IR,cv::NORM_L1); // 一范数,计算差的绝对值
if(dist<bestDist)
{
bestDist = dist;// SAD匹配目前最小匹配偏差
bestincR = incR; // SAD匹配目前最佳的修正量
}
vDists[L+incR] = dist; // 正常情况下,这里面的数据应该以抛物线形式变化
}
if(bestincR==-L || bestincR==L) // SAD匹配失败,同时放弃求该特征点的深度
continue;
// Sub-pixel match (Parabola fitting)
// 做抛物线拟合找谷底得到亚像素匹配deltaR
// (bestincR,dist) (bestincR-1,dist) (bestincR+1,dist)三个点拟合出抛物线
// bestincR+deltaR就是抛物线谷底的位置,相对SAD匹配出的最小值bestincR的修正量为deltaR
const float dist1 = vDists[L+bestincR-1];
const float dist2 = vDists[L+bestincR];
const float dist3 = vDists[L+bestincR+1];
const float deltaR = (dist1-dist3)/(2.0f*(dist1+dist3-2.0f*dist2));
// 抛物线拟合得到的修正量不能超过一个像素,否则放弃求该特征点的深度
if(deltaR<-1 || deltaR>1)
continue;
// Re-scaled coordinate
// 通过描述子匹配得到匹配点位置为scaleduR0
// 通过SAD匹配找到修正量bestincR
// 通过抛物线拟合找到亚像素修正量deltaR
float bestuR = mvScaleFactors[kpL.octave]*((float)scaleduR0+(float)bestincR+deltaR);
// 这里是disparity,根据它算出depth
float disparity = (uL-bestuR);
if(disparity>=minD && disparity<maxD) // 最后判断视差是否在范围内
{
if(disparity<=0)
{
disparity=0.01;
bestuR = uL-0.01;
}
// depth 是在这里计算的
// depth=baseline*fx/disparity
mvDepth[iL]=mbf/disparity; // 深度
mvuRight[iL] = bestuR; // 匹配对在右图的横坐标
vDistIdx.push_back(pair<int,int>(bestDist,iL)); // 该特征点SAD匹配最小匹配偏差
}
}
}
// 剔除SAD匹配偏差较大的匹配特征点
// 前面SAD匹配只判断滑动窗口中是否有局部最小值,这里通过对比剔除SAD匹配偏差比较大的特征点的深度
sort(vDistIdx.begin(),vDistIdx.end()); // 根据所有匹配对的SAD偏差进行排序, 距离由小到大
const float median = vDistIdx[vDistIdx.size()/2].first;
const float thDist = 1.5f*1.4f*median;
for(int i=vDistIdx.size()-1;i>=0;i--)
{
if(vDistIdx[i].first<thDist)
break;
else
{
mvuRight[vDistIdx[i].second]=-1;
mvDepth[vDistIdx[i].second]=-1;
}
}
}
void Frame::ComputeStereoFromRGBD(const cv::Mat &imDepth)
{
// mvDepth直接由depth图像读取
mvuRight = vector<float>(N,-1);
mvDepth = vector<float>(N,-1);
for(int i=0; i<N; i++)
{
const cv::KeyPoint &kp = mvKeys[i];
const cv::KeyPoint &kpU = mvKeysUn[i];
const float &v = kp.pt.y;
const float &u = kp.pt.x;
const float d = imDepth.at<float>(v,u);
if(d>0)
{
mvDepth[i] = d;
mvuRight[i] = kpU.pt.x-mbf/d;
}
}
}
// 将特征点坐标反投影到3D地图点(世界坐标)
// 二维像素点没办法投影到3D空间中去,因为缺少尺度信息
// 但是在已知深度的情况下,则可确定对应的尺度,最后获得3D中点坐标
cv::Mat Frame::UnprojectStereo(const int &i)
{
const float z = mvDepth[i];
if(z>0)
{
const float u = mvKeysUn[i].pt.x;
const float v = mvKeysUn[i].pt.y;
const float x = (u-cx)*z*invfx;
const float y = (v-cy)*z*invfy;
cv::Mat x3Dc = (cv::Mat_<float>(3,1) << x, y, z);
return mRwc*x3Dc+mOw;
}
else
return cv::Mat();
}
} //namespace ORB_SLAM
大概先这样吧,其实自己目前精力主要在单目上,代码中关于双目的地方看的不是很仔细,以后有空了再详细看看细节吧,感谢各种大佬的贡献。