ORBSLAM2源码学习(4) MapPoint类
程序员文章站
2024-03-25 08:09:34
...
真的是愤怒了,写了半天一按发表突然出现个空白的写博客界面???写半天啥都没了???你不是每隔一会自动保存呢?我真的是无语
#ifndef MAPPOINT_H
#define MAPPOINT_H
#include"KeyFrame.h"
#include"Frame.h"
#include"Map.h"
#include<opencv2/core/core.hpp>
#include<mutex>
namespace ORB_SLAM2
{
class KeyFrame;
class Map;
class Frame;
// 地图点可以通过关键帧来构造,也可以通过普通帧构造
// 普通帧构造的地图点只是临时被Tracking用来追踪的
class MapPoint
{
public:
MapPoint(const cv::Mat &Pos, KeyFrame* pRefKF, Map* pMap);
MapPoint(const cv::Mat &Pos, Map* pMap, Frame* pFrame, const int &idxF);
void SetWorldPos(const cv::Mat &Pos);
cv::Mat GetWorldPos();
cv::Mat GetNormal();
KeyFrame* GetReferenceKeyFrame();
std::map<KeyFrame*,size_t> GetObservations();
int Observations();
void AddObservation(KeyFrame* pKF,size_t idx);
void EraseObservation(KeyFrame* pKF);
int GetIndexInKeyFrame(KeyFrame* pKF);
bool IsInKeyFrame(KeyFrame* pKF);
void SetBadFlag();
bool isBad();
void Replace(MapPoint* pMP);
MapPoint* GetReplaced();
void IncreaseVisible(int n=1);
void IncreaseFound(int n=1);
float GetFoundRatio();
inline int GetFound(){
return mnFound;
}
void ComputeDistinctiveDescriptors();
cv::Mat GetDescriptor();
void UpdateNormalAndDepth();
float GetMinDistanceInvariance();
float GetMaxDistanceInvariance();
int PredictScale(const float ¤tDist, KeyFrame*pKF);
int PredictScale(const float ¤tDist, Frame* pF);
public:
long unsigned int mnId; // Global ID for MapPoint
static long unsigned int nNextId;
const long int mnFirstKFid; // 创建该MapPoint的关键帧ID
const long int mnFirstFrame; // 创建该MapPoint的帧ID(每一关键帧有一个帧ID)
int nObs;
// Variables used by the tracking
float mTrackProjX;
float mTrackProjY;
float mTrackProjXR;
int mnTrackScaleLevel;
float mTrackViewCos;
bool mbTrackInView;
long unsigned int mnTrackReferenceForFrame;
long unsigned int mnLastFrameSeen;
// Variables used by local mapping
long unsigned int mnBALocalForKF;
long unsigned int mnFuseCandidateForKF;
// Variables used by loop closing
long unsigned int mnLoopPointForKF;
long unsigned int mnCorrectedByKF;
long unsigned int mnCorrectedReference;
cv::Mat mPosGBA;
long unsigned int mnBAGlobalForKF;
static std::mutex mGlobalMutex;
protected:
// Position in absolute coordinates
cv::Mat mWorldPos; // MapPoint在世界坐标系下的坐标
// Keyframes observing the point and associated index in keyframe
// 观测到该MapPoint的KF和该MapPoint在KF中的索引
std::map<KeyFrame*,size_t> mObservations;
// Mean viewing direction
cv::Mat mNormalVector;
// Best descriptor to fast matching
// 每个3D点也有一个descriptor
// 如果MapPoint与很多帧图像特征点对应,那么距离其它描述子的平均距离最小的描述子是最佳描述子
// MapPoint只与一帧的图像特征点对应(由frame来构造时),那么这个特征点的描述子就是该3D点的描述子
cv::Mat mDescriptor;
// Reference KeyFrame
KeyFrame* mpRefKF;
// Tracking counters
int mnVisible;
int mnFound;
// Bad flag (we do not currently erase MapPoint from memory)
bool mbBad;
MapPoint* mpReplaced;
// Scale invariance distances
float mfMinDistance;
float mfMaxDistance;
Map* mpMap;
std::mutex mMutexPos;
std::mutex mMutexFeatures;
};
} //namespace ORB_SLAM
#endif // MAPPOINT_H
#include "MapPoint.h"
#include "ORBmatcher.h"
#include<mutex>
namespace ORB_SLAM2
{
long unsigned int MapPoint::nNextId=0;
mutex MapPoint::mGlobalMutex;
// 给定坐标与keyframe构造MapPoint
// 构造函数突出地图点和关键帧之间的观测关系,参考关键帧是哪一帧,该地图点被哪些关键帧观测到
// 对于被观测到的特征点的index是什么
// 共视图(covisibility graph),就是node是关键帧,node之间的权重是两个关键帧
// 同时看到的特征点的数量,数量越大,权重值越高
MapPoint::MapPoint(const cv::Mat &Pos, KeyFrame *pRefKF, Map* pMap):
mnFirstKFid(pRefKF->mnId), mnFirstFrame(pRefKF->mnFrameId), nObs(0), mnTrackReferenceForFrame(0),
mnLastFrameSeen(0), mnBALocalForKF(0), mnFuseCandidateForKF(0), mnLoopPointForKF(0), mnCorrectedByKF(0),
mnCorrectedReference(0), mnBAGlobalForKF(0), mpRefKF(pRefKF), mnVisible(1), mnFound(1), mbBad(false),
mpReplaced(static_cast<MapPoint*>(NULL)), mfMinDistance(0), mfMaxDistance(0), mpMap(pMap)
{
Pos.copyTo(mWorldPos);
mNormalVector = cv::Mat::zeros(3,1,CV_32F);
// MapPoints can be created from Tracking and Local Mapping. This mutex avoid conflicts with id.
unique_lock<mutex> lock(mpMap->mMutexPointCreation);
mnId=nNextId++;
}
// 给定坐标与frame构造MapPoint
MapPoint::MapPoint(const cv::Mat &Pos, Map* pMap, Frame* pFrame, const int &idxF):
mnFirstKFid(-1), mnFirstFrame(pFrame->mnId), nObs(0), mnTrackReferenceForFrame(0), mnLastFrameSeen(0),
mnBALocalForKF(0), mnFuseCandidateForKF(0),mnLoopPointForKF(0), mnCorrectedByKF(0),
mnCorrectedReference(0), mnBAGlobalForKF(0), mpRefKF(static_cast<KeyFrame*>(NULL)), mnVisible(1),
mnFound(1), mbBad(false), mpReplaced(NULL), mpMap(pMap)
{
Pos.copyTo(mWorldPos);
cv::Mat Ow = pFrame->GetCameraCenter();
mNormalVector = mWorldPos - Ow;// 世界坐标系下相机到3D点的向量
mNormalVector = mNormalVector/cv::norm(mNormalVector);// 世界坐标系下相机到3D点的单位向量
cv::Mat PC = Pos - Ow;
const float dist = cv::norm(PC);
const int level = pFrame->mvKeysUn[idxF].octave;
const float levelScaleFactor = pFrame->mvScaleFactors[level];
const int nLevels = pFrame->mnScaleLevels;
mfMaxDistance = dist*levelScaleFactor;
mfMinDistance = mfMaxDistance/pFrame->mvScaleFactors[nLevels-1];
pFrame->mDescriptors.row(idxF).copyTo(mDescriptor);
// MapPoints can be created from Tracking and Local Mapping. This mutex avoid conflicts with id.
unique_lock<mutex> lock(mpMap->mMutexPointCreation);
mnId=nNextId++;
}
void MapPoint::SetWorldPos(const cv::Mat &Pos)
{
unique_lock<mutex> lock2(mGlobalMutex);
unique_lock<mutex> lock(mMutexPos);
Pos.copyTo(mWorldPos);
}
cv::Mat MapPoint::GetWorldPos()
{
unique_lock<mutex> lock(mMutexPos);
return mWorldPos.clone();
}
cv::Mat MapPoint::GetNormal()
{
unique_lock<mutex> lock(mMutexPos);
return mNormalVector.clone();
}
KeyFrame* MapPoint::GetReferenceKeyFrame()
{
unique_lock<mutex> lock(mMutexFeatures);
return mpRefKF;
}
// 记录哪些KeyFrame的哪个特征点能观测到该MapPoint
// 并增加观测的相机数目nObs,单目+1,双目或者grbd+2
// 这个函数是建立关键帧共视关系的核心函数,能共同观测到某些MapPoints的关键帧是共视关键帧
void MapPoint::AddObservation(KeyFrame* pKF, size_t idx)
{
unique_lock<mutex> lock(mMutexFeatures);
if(mObservations.count(pKF))
return;
// 记录下能观测到该MapPoint的KF和该MapPoint在KF中的索引
mObservations[pKF]=idx;
if(pKF->mvuRight[idx]>=0)
nObs+=2; // 双目或者grbd
else
nObs++; // 单目
}
// 删除地图点观测:从当前地图点的mObservation和nObs成员中删除对应的关键帧的观测关系
// 如果该keyFrame是参考帧,该Frame被删除后重新指定RefFrame
// 当观测到该点的相机数目少于2时,删除该点
void MapPoint::EraseObservation(KeyFrame* pKF)
{
bool bBad=false;
{
unique_lock<mutex> lock(mMutexFeatures);
if(mObservations.count(pKF))
{
int idx = mObservations[pKF];
if(pKF->mvuRight[idx]>=0)
nObs-=2;
else
nObs--;
mObservations.erase(pKF);
// 重新指定参考帧
if(mpRefKF==pKF)
mpRefKF=mObservations.begin()->first;
// If only 2 observations or less, discard point
if(nObs<=2)
bBad=true;
}
}
if(bBad)
SetBadFlag();
}
map<KeyFrame*, size_t> MapPoint::GetObservations()
{
unique_lock<mutex> lock(mMutexFeatures);
return mObservations;
}
int MapPoint::Observations()
{
unique_lock<mutex> lock(mMutexFeatures);
return nObs;
}
// 告知可以观测到该MapPoint的Frame,该MapPoint已被删除
void MapPoint::SetBadFlag()
{
map<KeyFrame*,size_t> obs;
{
unique_lock<mutex> lock1(mMutexFeatures);
unique_lock<mutex> lock2(mMutexPos);
mbBad=true;
obs = mObservations;
mObservations.clear();
}
for(map<KeyFrame*,size_t>::iterator mit=obs.begin(), mend=obs.end(); mit!=mend; mit++)
{
KeyFrame* pKF = mit->first;
pKF->EraseMapPointMatch(mit->second);
}
mpMap->EraseMapPoint(this);
}
MapPoint* MapPoint::GetReplaced()
{
unique_lock<mutex> lock1(mMutexFeatures);
unique_lock<mutex> lock2(mMutexPos);
return mpReplaced;
}
// 在形成闭环的时候,会更新KeyFrame与MapPoint之间的关系
// 将当前地图点(this),替换成pMp。
// 关键帧将联系的this替换成pMap
void MapPoint::Replace(MapPoint* pMP)
{
if(pMP->mnId==this->mnId)
return;
int nvisible, nfound;
map<KeyFrame*,size_t> obs;
{
unique_lock<mutex> lock1(mMutexFeatures);
unique_lock<mutex> lock2(mMutexPos);
obs=mObservations;
mObservations.clear();
mbBad=true;
nvisible = mnVisible;
nfound = mnFound;
mpReplaced = pMP;
}
// 所有能观测到该MapPoint的keyframe都要替换
for(map<KeyFrame*,size_t>::iterator mit=obs.begin(), mend=obs.end(); mit!=mend; mit++)
{
// Replace measurement in keyframe
KeyFrame* pKF = mit->first;
if(!pMP->IsInKeyFrame(pKF))
{
pKF->ReplaceMapPointMatch(mit->second, pMP); // 让KeyFrame用pMP替换掉原来的MapPoint
pMP->AddObservation(pKF,mit->second); // 让MapPoint替换掉对应的KeyFrame
}
else
{
// 产生冲突,即pKF中有两个特征点a,b,这两个特征点的描述子是近似相同的
// 这两个特征点对应两个MapPoint为this,pMP
pKF->EraseMapPointMatch(mit->second);
}
}
pMP->IncreaseFound(nfound);
pMP->IncreaseVisible(nvisible);
pMP->ComputeDistinctiveDescriptors();
mpMap->EraseMapPoint(this);
}
bool MapPoint::isBad()
{
unique_lock<mutex> lock(mMutexFeatures);
unique_lock<mutex> lock2(mMutexPos);
return mbBad;
}
// mnVisible和mnFound并不是等价的,mnFound的地图点一定是mnVisible的
// 但是mnVisible的地图点可能没有found
void MapPoint::IncreaseVisible(int n)
{
unique_lock<mutex> lock(mMutexFeatures);
mnVisible+=n;
}
void MapPoint::IncreaseFound(int n)
{
unique_lock<mutex> lock(mMutexFeatures);
mnFound+=n;
}
float MapPoint::GetFoundRatio()
{
unique_lock<mutex> lock(mMutexFeatures);
return static_cast<float>(mnFound)/mnVisible;
}
// 计算具有代表的描述子
// 由于一个MapPoint会被许多相机观测到,因此在插入关键帧后,需要判断是否更新当前点的最适合的描述子
// 先获得当前点的所有描述子,然后计算描述子之间的两两距离,最好的描述子与其他描述子具有最小的距离中值
void MapPoint::ComputeDistinctiveDescriptors()
{
// Retrieve all observed descriptors
vector<cv::Mat> vDescriptors;
map<KeyFrame*,size_t> observations;
{
unique_lock<mutex> lock1(mMutexFeatures);
if(mbBad)
return;
observations=mObservations;
}
if(observations.empty())
return;
vDescriptors.reserve(observations.size());
// 遍历观测到3d点的所有关键帧,获得orb描述子,并插入到vDescriptors中
for(map<KeyFrame*,size_t>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKF = mit->first;
if(!pKF->isBad())
vDescriptors.push_back(pKF->mDescriptors.row(mit->second));
}
if(vDescriptors.empty())
return;
// Compute distances between them
// 获得这些描述子两两之间的距离
const size_t N = vDescriptors.size();
std::vector<std::vector<float> > Distances;
Distances.resize(N, vector<float>(N, 0));
for (size_t i = 0; i<N; i++)
{
Distances[i][i]=0;
for(size_t j=i+1;j<N;j++)
{
int distij = ORBmatcher::DescriptorDistance(vDescriptors[i],vDescriptors[j]);
Distances[i][j]=distij;
Distances[j][i]=distij;
}
}
// Take the descriptor with least median distance to the rest
int BestMedian = INT_MAX;
int BestIdx = 0;
for(size_t i=0;i<N;i++)
{
// 第i个描述子到其它所有所有描述子之间的距离
//vector<int> vDists(Distances[i],Distances[i]+N);
vector<int> vDists(Distances[i].begin(), Distances[i].end());
sort(vDists.begin(), vDists.end());
// 获得中值
int median = vDists[0.5*(N-1)];
// 寻找最小的中值
if(median<BestMedian)
{
BestMedian = median;
BestIdx = i;
}
}
{
unique_lock<mutex> lock(mMutexFeatures);
mDescriptor = vDescriptors[BestIdx].clone();
}
}
cv::Mat MapPoint::GetDescriptor()
{
unique_lock<mutex> lock(mMutexFeatures);
return mDescriptor.clone();
}
int MapPoint::GetIndexInKeyFrame(KeyFrame *pKF)
{
unique_lock<mutex> lock(mMutexFeatures);
if(mObservations.count(pKF))
return mObservations[pKF];
else
return -1;
}
bool MapPoint::IsInKeyFrame(KeyFrame *pKF)
{
unique_lock<mutex> lock(mMutexFeatures);
return (mObservations.count(pKF));
}
// 更新平均观测方向以及观测距离范围
void MapPoint::UpdateNormalAndDepth()
{
map<KeyFrame*,size_t> observations;
KeyFrame* pRefKF;
cv::Mat Pos;
{
unique_lock<mutex> lock1(mMutexFeatures);
unique_lock<mutex> lock2(mMutexPos);
if(mbBad)
return;
observations=mObservations; // 获得观测到该3d点的所有关键帧
pRefKF=mpRefKF; // 观测到该点的参考关键帧
Pos = mWorldPos.clone(); // 3d点在世界坐标系中的位置
}
if(observations.empty())
return;
cv::Mat normal = cv::Mat::zeros(3,1,CV_32F);
int n=0;
for(map<KeyFrame*,size_t>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
{
KeyFrame* pKF = mit->first;
cv::Mat Owi = pKF->GetCameraCenter();
cv::Mat normali = mWorldPos - Owi;
normal = normal + normali/cv::norm(normali); // 对所有关键帧对该点的观测方向归一化为单位向量进行求和
n++;
}
cv::Mat PC = Pos - pRefKF->GetCameraCenter(); // 参考关键帧相机指向3D点的向量
const float dist = cv::norm(PC); // 该点到参考关键帧相机的距离
const int level = pRefKF->mvKeysUn[observations[pRefKF]].octave;
const float levelScaleFactor = pRefKF->mvScaleFactors[level];
const int nLevels = pRefKF->mnScaleLevels;
{
unique_lock<mutex> lock3(mMutexPos);
mfMaxDistance = dist*levelScaleFactor; // 观测到该点的距离下限
mfMinDistance = mfMaxDistance/pRefKF->mvScaleFactors[nLevels-1]; // 观测到该点的距离上限
mNormalVector = normal/n; // 获得平均的观测方向
}
}
float MapPoint::GetMinDistanceInvariance()
{
unique_lock<mutex> lock(mMutexPos);
return 0.8f*mfMinDistance;
}
float MapPoint::GetMaxDistanceInvariance()
{
unique_lock<mutex> lock(mMutexPos);
return 1.2f*mfMaxDistance;
}
// 由当前特征点的距离,推测所在的层级
int MapPoint::PredictScale(const float ¤tDist, KeyFrame* pKF)
{
float ratio;
{
unique_lock<mutex> lock(mMutexPos);
ratio = mfMaxDistance/currentDist;
}
int nScale = ceil(log(ratio)/pKF->mfLogScaleFactor);
if(nScale<0)
nScale = 0;
else if(nScale>=pKF->mnScaleLevels)
nScale = pKF->mnScaleLevels-1;
return nScale;
}
int MapPoint::PredictScale(const float ¤tDist, Frame* pF)
{
float ratio;
{
unique_lock<mutex> lock(mMutexPos);
ratio = mfMaxDistance/currentDist;
}
int nScale = ceil(log(ratio)/pF->mfLogScaleFactor);
if(nScale<0)
nScale = 0;
else if(nScale>=pF->mnScaleLevels)
nScale = pF->mnScaleLevels-1;
return nScale;
}
} //namespace ORB_SLAM
推荐阅读
-
ORBSLAM2源码学习(4) MapPoint类
-
ORBSLAM2源码学习(5) KeyFrame类
-
ORBSLAM2源码学习(6) ORBmatcher类
-
ORBSLAM2源码学习(1)ORBextractor
-
redis学习 jedis 类图及源码分析 博客分类: redis redis类图uml学习源码
-
JAVA源码学习(二)——Arrays类
-
SLF4J(二) - SLF4J绑定了多个实现类的错误是怎么一回事儿?源码解析
-
spring源码学习系列4-3种常用的自动代理创建器 博客分类: spring spring
-
yii源码分析4——非核心类的导入注册
-
学习 lodash 源码整体架构,打造属于自己的函数式编程类库