TensorFlow正弦函数预测
程序员文章站
2024-03-24 23:48:28
...
《TensorFlow实战Google深度学习框架》8.4.2
代码:
#!/usr/bin/env python
#-*-coding:UTF-8-*-
import numpy as np
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat
import matplotlib.pyplot as plt
learn = tf.contrib.learn
HIDDEN_SIZE = 30
NUM_LAYERS = 2
TIMESTEPS = 10
TRAINING_STEPS = 3000
BATCH_SIZE = 32
TRAINING_EXAMPLES = 10000
TESTING_EXAMPLES = 1000
SAMPLE_GAP = 0.01
def generate_data(seq):
X = []
y = []
#序列的第i项和后面的TIMESTEPS-1项合在一起作为输入:第i + TIMESTEPS项作为输出。
#即用sin函数前面的TIMESTEPS个点的信息,预测第i + TIMESTEPS个点的函数值
for i in range(len(seq) - TIMESTEPS - 1):
X.append([seq[i: i + TIMESTEPS]])
y.append([seq[i + TIMESTEPS]])
return np.array(X, dtype=np.float32), np.array(y, dtype=np.float32)
def lstm_model(X, y):
lstm_cell = tf.contrib.rnn.BasicLSTMCell(HIDDEN_SIZE, state_is_tuple=True)
cell = tf.contrib.rnn.MultiRNNCell([lstm_cell] * NUM_LAYERS)
output, _ = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
output = tf.reshape(output, [-1, HIDDEN_SIZE])
#对LSTM网络的输出再做加一层全连接层并计算损失。注意这里默认的损失为平均平方差损失函数
predictions = tf.contrib.layers.fully_connected(output, 1, None)
labels = tf.reshape(y,[-1])
predictions = tf.reshape(predictions,[-1])
loss = tf.losses.mean_squared_error(predictions, labels)
train_op = tf.contrib.layers.optimize_loss(
loss, tf.contrib.framework.get_global_step(),
optimizer="Adagrad", learning_rate=0.1)
return predictions, loss, train_op
regressor = SKCompat(learn.Estimator(model_fn=lstm_model,model_dir="/home/jim/TensorFlow/Models"))
test_start = TRAINING_EXAMPLES * SAMPLE_GAP
test_end = (TRAINING_EXAMPLES + TESTING_EXAMPLES) * SAMPLE_GAP
train_X, train_y = generate_data(np.sin(np.linspace(
0, test_start, TRAINING_EXAMPLES, dtype=np.float32)))
test_X, test_y = generate_data(np.sin(np.linspace(
test_start, test_end, TESTING_EXAMPLES, dtype=np.float32)))
regressor.fit(train_X, train_y, batch_size=BATCH_SIZE,
steps=TRAINING_STEPS)
predicted = [[pred] for pred in regressor.predict(test_X)]
rmse = np.sqrt(((predicted - test_y) ** 2).mean(axis=0))
print ("Mean Square Error is: %f" % rmse[0])
fig = plt.figure()
plot_predicted, = plt.plot(predicted, label='predicted')
plot_test, = plt.plot(test_y, label='real_sin')
plt.legend([plot_predicted, plot_test],['predicted','real_sin'])
#fig.savefig('sin.png')
plt.show()
错误:
Traceback (most recent call last):
File "/home/jim/TensorFlow/sin_prediction.py", line 73, in <module>
steps=TRAINING_STEPS)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 1527, in fit
monitors=all_monitors)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/util/deprecation.py", line 432, in new_func
return func(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 524, in fit
loss = self._train_model(input_fn=input_fn, hooks=hooks)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 1041, in _train_model
model_fn_ops = self._get_train_ops(features, labels)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 1264, in _get_train_ops
return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 1227, in _call_model_fn
model_fn_results = self._model_fn(features, labels, **kwargs)
File "/home/jim/TensorFlow/sin_prediction.py", line 44, in lstm_model
output, _ = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 618, in dynamic_rnn
dtype=dtype)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 815, in _dynamic_rnn_loop
swap_memory=swap_memory)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 3209, in while_loop
result = loop_context.BuildLoop(cond, body, loop_vars, shape_invariants)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 2941, in BuildLoop
pred, body, original_loop_vars, loop_vars, shape_invariants)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 2878, in _BuildLoop
body_result = body(*packed_vars_for_body)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 3179, in <lambda>
body = lambda i, lv: (i + 1, orig_body(*lv))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 786, in _time_step
(output, new_state) = call_cell()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 772, in <lambda>
call_cell = lambda: cell(input_t, state)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 232, in __call__
return super(RNNCell, self).__call__(inputs, state)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/layers/base.py", line 329, in __call__
outputs = super(Layer, self).__call__(inputs, *args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/keras/engine/base_layer.py", line 703, in __call__
outputs = self.call(inputs, *args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 1325, in call
cur_inp, new_state = cell(cur_inp, cur_state)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 339, in __call__
*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/layers/base.py", line 329, in __call__
outputs = super(Layer, self).__call__(inputs, *args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/keras/engine/base_layer.py", line 703, in __call__
outputs = self.call(inputs, *args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn_cell_impl.py", line 638, in call
array_ops.concat([inputs, h], 1), self._kernel)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/math_ops.py", line 2014, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_math_ops.py", line 4279, in mat_mul
name=name)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3414, in create_op
op_def=op_def)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1756, in __init__
control_input_ops)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1592, in _create_c_op
raise ValueError(str(e))
ValueError: Dimensions must be equal, but are 60 and 40 for 'rnn/while/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/MatMul_1' (op: 'MatMul') with input shapes: [?,60], [40,120].
解决:
将以下两句修改
lstm_cell = tf.contrib.rnn.BasicLSTMCell(HIDDEN_SIZE, state_is_tuple=True)
cell = tf.contrib.rnn.MultiRNNCell([lstm_cell] * NUM_LAYERS)
def lstm_cell():
lstm = tf.contrib.rnn.BasicLSTMCell(HIDDEN_SIZE, forget_bias=1.0)
return lstm
def lstm_model(X,y):
cell = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(NUM_LAYERS)])
...
推荐阅读
-
TensorFlow正弦函数预测
-
AlexNet——TensorFlow实现MNIST图像分类预测
-
DL之LSTM:基于tensorflow框架利用LSTM算法对气温数据集训练并预测
-
tensorflow2.0------自定义损失函数和Layer
-
Tensorflow中tf.nn.relu()函数的理解
-
Tensorflow中tf.nn.relu()函数的理解
-
tensorflow之tf.nn.moments()函数解析
-
关于Tensorflow中的tf.train.batch函数的使用
-
损失函数 DiceLoss 的 Pytorch、TensorFlow 实现
-
JavaScript中反正弦函数Math.asin()的使用简介