欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

计算两幅图像的PSNR和SSIM的python源码

程序员文章站 2022-03-20 13:03:29
...
import math
import numpy as np
from skimage import io
from scipy.signal import convolve2d

def compute_psnr(img1, img2):
    if isinstance(img1,str):
        img1=io.imread(img1)
    if isinstance(img2,str):
        img2=io.imread(img2)
    mse = np.mean( (img1/255. - img2/255.) ** 2 )
    if mse < 1.0e-10:
       return 1000000000000
    PIXEL_MAX = 1
    psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
    return mse, psnr


def matlab_style_gauss2D(shape=(3,3),sigma=0.5):
    """
    2D gaussian mask - should give the same result as MATLAB's
    fspecial('gaussian',[shape],[sigma])
    """
    m,n = [(ss-1.)/2. for ss in shape]
    y,x = np.ogrid[-m:m+1,-n:n+1]
    h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) )
    h[ h < np.finfo(h.dtype).eps*h.max() ] = 0
    sumh = h.sum()
    if sumh != 0:
        h /= sumh
    return h

def filter2(x, kernel, mode='same'):
    return convolve2d(x, np.rot90(kernel, 2), mode=mode)

def compute_ssim(im1, im2, k1=0.01, k2=0.03, win_size=11, L=255):
    if not im1.shape == im2.shape:
        raise ValueError("Input Imagees must have the same dimensions")
    if len(im1.shape) > 2:
        raise ValueError("Please input the images with 1 channel")

    M, N = im1.shape
    C1 = (k1*L)**2
    C2 = (k2*L)**2
    window = matlab_style_gauss2D(shape=(win_size,win_size), sigma=1.5)
    window = window/np.sum(np.sum(window))

    if im1.dtype == np.uint8:
        im1 = np.double(im1)
    if im2.dtype == np.uint8:
        im2 = np.double(im2)

    mu1 = filter2(im1, window, 'valid')
    mu2 = filter2(im2, window, 'valid')
    mu1_sq = mu1 * mu1
    mu2_sq = mu2 * mu2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = filter2(im1*im1, window, 'valid') - mu1_sq
    sigma2_sq = filter2(im2*im2, window, 'valid') - mu2_sq
    sigmal2 = filter2(im1*im2, window, 'valid') - mu1_mu2

    ssim_map = ((2*mu1_mu2+C1) * (2*sigmal2+C2)) / ((mu1_sq+mu2_sq+C1) * (sigma1_sq+sigma2_sq+C2))

    return np.mean(np.mean(ssim_map))

if __name__ == "__main__":
    from PIL import Image
    # gray images
    pred = np.asarray(Image.open('./img1.png'))
    gt = np.asarray(Image.open('./img2.png'))
    # # if not:
    # img1 = np.asarray(Image.open('./img1.png').convert('L'))
    # img2 = np.asarray(Image.open('./img2.png').convert('L'))

    mse, psnr = compute_psnr(pred, gt)
    ssim = compute_ssim(pred, gt)

    print('mse = %.6f, psnr = %.6f, ssim = %.6f' % (mes, psnr, ssim))