PSNR值和SSIM值的计算——基于python
程序员文章站
2022-03-09 13:13:40
...
针对super resolution任务中的评价指标,针对pytorch框架和最近常用的EDSR代码,做一个简单的总结。在EDSR代码中,为了测试的准确性,是先将SR图片生成保存起来,然后用matlab代码进行计算,并且是在y通道上进行计算psnr和ssim,但是这样可能会费时间,所以这里直接集成在python代码中,最终计算出来的结果和matlab代码计算出来的结果是一样的。
1、使用模型生成SR图片:
sr = self.model(lr, idx_scale)
2、然后将tensor转化为numpy:
visuals = utility.get_current_visual(lr, hr, sr, self.args.rgb_range)
其中:get_current_visual(...)
def get_current_visual(lr, hr ,sr, rgb_range):
"""
return LR SR (HR) images
"""
out_dict = OrderedDict()
out_dict['LR'] = lr.data[0].float().cpu()
out_dict['SR'] = sr.data[0].float().cpu()
out_dict['HR'] = hr.data[0].float().cpu()
out_dict['LR'], out_dict['HR'], out_dict['SR'] = \
Tensor2np([out_dict['LR'], out_dict['HR'], out_dict['SR']], rgb_range)
return out_dict
def Tensor2np(tensor_list, rgb_range):
def _Tensor2numpy(tensor, rgb_range):
array = np.transpose(quantize(tensor, rgb_range).numpy(), (1, 2, 0)).astype(np.uint8)
return array
return [_Tensor2numpy(tensor, rgb_range) for tensor in tensor_list]
def quantize(img, rgb_range):
pixel_range = 255 / rgb_range
return img.mul(pixel_range).clamp(0, 255).round
3、计算psnr和ssim值
psnr, ssim = utility.calc_metrics(visuals['SR'], visuals['HR'], crop_border=scale)
重点在于计算PSNR值和SSIM值:
将RGB通道图片转换为yCbCr
def rgb2ycbcr(img, only_y=True):
'''same as matlab rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
if only_y:
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
else:
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
#########################calc_metrics#############################
def calc_metrics(img1, img2, crop_border, test_Y=True):
#
img1 = img1 / 255.
img2 = img2 / 255.
if test_Y and img1.shape[2] == 3: # evaluate on Y channel in YCbCr color space
im1_in = rgb2ycbcr(img1)
im2_in = rgb2ycbcr(img2)
else:
im1_in = img1
im2_in = img2
if im1_in.ndim == 3:
cropped_im1 = im1_in[crop_border:-crop_border, crop_border:-crop_border, :]
cropped_im2 = im2_in[crop_border:-crop_border, crop_border:-crop_border, :]
elif im1_in.ndim == 2:
cropped_im1 = im1_in[crop_border:-crop_border, crop_border:-crop_border]
cropped_im2 = im2_in[crop_border:-crop_border, crop_border:-crop_border]
else:
raise ValueError('Wrong image dimension: {}. Should be 2 or 3.'.format(im1_in.ndim))
psnr = calc_psnr(cropped_im1 * 255, cropped_im2 * 255)
ssim = calc_ssim(cropped_im1 * 255, cropped_im2 * 255)
return psnr, ssim
def calc_psnr(img1, img2):
# img1 and img2 have range [0, 255]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def calc_ssim(img1, img2):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1, img2))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
上一篇: php在网页登录成功后怎么实现网页跳转
下一篇: 如何在Apache中启用HTTP/2.0