欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PSNR值和SSIM值的计算——基于python

程序员文章站 2022-03-09 13:13:40
...
针对super resolution任务中的评价指标,针对pytorch框架和最近常用的EDSR代码,做一个简单的总结。在EDSR代码中,为了测试的准确性,是先将SR图片生成保存起来,然后用matlab代码进行计算,并且是在y通道上进行计算psnr和ssim,但是这样可能会费时间,所以这里直接集成在python代码中,最终计算出来的结果和matlab代码计算出来的结果是一样的。
1、使用模型生成SR图片:
sr = self.model(lr, idx_scale)
2、然后将tensor转化为numpy:
visuals = utility.get_current_visual(lr, hr, sr, self.args.rgb_range)
其中:get_current_visual(...)
def get_current_visual(lr, hr ,sr, rgb_range):
    """
    return LR SR (HR) images
    """
    out_dict = OrderedDict()
    out_dict['LR'] = lr.data[0].float().cpu()
    out_dict['SR'] = sr.data[0].float().cpu()
    out_dict['HR'] = hr.data[0].float().cpu()

    out_dict['LR'], out_dict['HR'], out_dict['SR'] = \
    Tensor2np([out_dict['LR'], out_dict['HR'], out_dict['SR']], rgb_range)
    return out_dict
        
def Tensor2np(tensor_list, rgb_range):
    def _Tensor2numpy(tensor, rgb_range):
        array = np.transpose(quantize(tensor, rgb_range).numpy(), (1, 2, 0)).astype(np.uint8)
        return array
    return [_Tensor2numpy(tensor, rgb_range) for tensor in tensor_list]

def quantize(img, rgb_range):
    pixel_range = 255 / rgb_range
    return img.mul(pixel_range).clamp(0, 255).round
3、计算psnr和ssim值
psnr, ssim = utility.calc_metrics(visuals['SR'], visuals['HR'], crop_border=scale)

重点在于计算PSNR值和SSIM值:

将RGB通道图片转换为yCbCr
def rgb2ycbcr(img, only_y=True):
    '''same as matlab rgb2ycbcr
    only_y: only return Y channel
    Input:
        uint8, [0, 255]
        float, [0, 1]
    '''
    in_img_type = img.dtype
    img.astype(np.float32)
    if in_img_type != np.uint8:
        img *= 255.
    # convert
    if only_y:
        rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
    else:
        rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
                                [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
    if in_img_type == np.uint8:
        rlt = rlt.round()
    else:
        rlt /= 255.
    return rlt.astype(in_img_type)
#########################calc_metrics#############################
def calc_metrics(img1, img2, crop_border, test_Y=True):
    #
    img1 = img1 / 255.
    img2 = img2 / 255.

    if test_Y and img1.shape[2] == 3:  # evaluate on Y channel in YCbCr color space
        im1_in = rgb2ycbcr(img1)
        im2_in = rgb2ycbcr(img2)
    else:
        im1_in = img1
        im2_in = img2

    if im1_in.ndim == 3:
        cropped_im1 = im1_in[crop_border:-crop_border, crop_border:-crop_border, :]
        cropped_im2 = im2_in[crop_border:-crop_border, crop_border:-crop_border, :]
    elif im1_in.ndim == 2:
        cropped_im1 = im1_in[crop_border:-crop_border, crop_border:-crop_border]
        cropped_im2 = im2_in[crop_border:-crop_border, crop_border:-crop_border]
    else:
        raise ValueError('Wrong image dimension: {}. Should be 2 or 3.'.format(im1_in.ndim))

    psnr = calc_psnr(cropped_im1 * 255, cropped_im2 * 255)
    ssim = calc_ssim(cropped_im1 * 255, cropped_im2 * 255)
    return psnr, ssim

def calc_psnr(img1, img2):
    # img1 and img2 have range [0, 255]
    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    mse = np.mean((img1 - img2)**2)
    if mse == 0:
        return float('inf')
    return 20 * math.log10(255.0 / math.sqrt(mse))

def ssim(img1, img2):
    C1 = (0.01 * 255)**2
    C2 = (0.03 * 255)**2

    img1 = img1.astype(np.float64)
    img2 = img2.astype(np.float64)
    kernel = cv2.getGaussianKernel(11, 1.5)
    window = np.outer(kernel, kernel.transpose())

    mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]  # valid
    mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
    mu1_sq = mu1**2
    mu2_sq = mu2**2
    mu1_mu2 = mu1 * mu2
    sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
    sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
    sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2

    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
                                                            (sigma1_sq + sigma2_sq + C2))
    return ssim_map.mean()


def calc_ssim(img1, img2):
    '''calculate SSIM
    the same outputs as MATLAB's
    img1, img2: [0, 255]
    '''
    if not img1.shape == img2.shape:
        raise ValueError('Input images must have the same dimensions.')
    if img1.ndim == 2:
        return ssim(img1, img2)
    elif img1.ndim == 3:
        if img1.shape[2] == 3:
            ssims = []
            for i in range(3):
                ssims.append(ssim(img1, img2))
            return np.array(ssims).mean()
        elif img1.shape[2] == 1:
            return ssim(np.squeeze(img1), np.squeeze(img2))
    else:
        raise ValueError('Wrong input image dimensions.')
相关标签: 超分辨率重建